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Abstract

Athletes and coaches in most professional sports make use of high-
tech equipment to analyze and, subsequently, improve the athlete’s
performance. High-speed video cameras are employed, for in-
stance, to record the swing of a golf club or a tennis racket, the
movement of the feet while running, and the body motion in ap-
paratus gymnastics. High-tech and high-speed equipment, how-
ever, usually implies high-cost as well. In this paper, we present a
passive optical approach to capture high-speed motion using multi-
exposure images obtained with low-cost commodity still cameras
and a stroboscope. The recorded motion remains completely undis-
turbed by the motion capture process. We apply our approach to
capture the motion of hand and ball for a variety of baseball pitches
and present algorithms to automatically track the position, velocity,
rotation axis, and spin of the ball along its trajectory. To demon-
strate the validity of our setup and algorithms, we analyze the con-
sistency of our measurements with a physically based model that
predicts the trajectory of a spinning baseball. Our approach can be
applied to capture a wide variety of other high-speed objects and ac-
tivities such as golfing, bowling, or tennis for visualization as well
as analysis purposes.

CR Categories: I.4.1 [Image Processing and Computer Vision]:
Digitization and Image Capture—Camera calibration I.4.6 [Im-
age Processing and Computer Vision]: Segmentation—Edge and
feature detection I.4.8 [Image Processing and Computer Vision]:
Scene Analysis—Motion, tracking

Keywords: high-speed motion capture, multi-exposure images,
pitching and flight of baseball, physically based validation

1 Introduction

Creating images of high-speed motion for analysis of the underly-
ing action has been drawing the attention of researchers for many
decades. Back in 1878, Eadweard Muybridge conducted his fa-
mous experiments to create serial images of fast motion [Muy-
bridge 1887]. A setup of twelve cameras was used to capture dif-
ferent stages of a galloping horse. One of the photographs indeed
showed the horse with all of its hooves off the ground, corroborat-
ing the hypothesis that had led to these experiments. In the 1930’s,
Harold E. Edgerton at MIT perfected the use of stroboscope pho-
tography to create multi-exposure images of high-speed motion, see
for instance [Collins and Bruce 1994]. However, the acquisition
process is usually constrained to actions taking place in a very lim-
ited spatial domain for which decent illumination conditions can be

Figure 1: Visualization of ball and hand motion obtained from
multi-exposure images. The hand motion during release of the
baseball is captured and shown together with the resulting flight
characteristics of the ball.

set up easily. In this paper, we address the problem of capturing
and tracking high-speed motion sequences that cover large areas of
space. To avoid the expenses of professional high-speed video cam-
eras and high-resolution motion capture equipment, our approach is
based on low-cost commodity still cameras and strobe lights.

We demonstrate our motion capture approach for the hand mo-
tion during pitching and the flight trajectory of a baseball. Besides
the popularity of baseball, there are several reasons for our choice.
First of all, the underlying motion is very fast and extends over
a large area of space: the speed of a pitched baseball can reach
80 mph and above, and the distance from the pitcher mound to the
home base is 60.5 feet (18.44 meters). In addition, there are many
different motion parameters that we would like to measure simulta-
neously for a variety of pitches:

• 3D positions along the trajectory of the flying ball;

• initial flight parameters of the ball: norm and direction of ini-
tial velocity, rotation axis, spin frequency;

• positions of the finger joints of the pitcher’s hand before, at,
and after releasing the ball.

Finally, it is possible to use a physically based model to analyze
the consistency of the acquired data: if the ball’s initial parame-
ters and flight positions are reconstructed with high accuracy, they
should match the results from a physically based model that pre-
dicts the flight trajectory of a spinning ball traveling through air. In
summary, both the pitching and flight of a baseball turn out to be
a challenging and adequate type of motion for our motion capture
approach alike.

1.1 Contributions

In this paper, we introduce the following main contributions:

• an approach for capturing high-speed motion using multi-
exposure images obtained with low-cost commodity still cam-
eras and stroboscopes;



• an algorithm to automatically compute the 3D positions and
the initial flight parameters of a baseball from multi-exposure
images;

• a procedure to reconstruct articulated hand motion from
multi-exposure images;

• validation of the approach by means of a physically based
model of the flight of a baseball.

2 Background

In many sports highly competitive professional leagues have
evolved where technical perfection has become essential for ath-
letes in order to keep up with their rivals. Baseball has always been
one of the most popular sports in the U.S. and many countries in
Asia. Due to its variety of different elements it is technically very
challenging. In particular, pitching is the single most important part
of baseball. The goal for the pitcher is to throw the ball in such a
way that its trajectory is as unpredictable as possible for the other
team’s batter. In the history of baseball a great variety of pitches
has been developed. They differ in the way the pitcher’s hand and
fingers move during release of the ball. Different hand motions lead
to different initial velocities, rotation axes, and spin frequencies of
the ball, which in turn lead to different flight trajectories. The art of
pitching is to be able to perform all kinds of pitches such that the
ball consistently enters the strike zone near the batter in order to be
valid. The pursuit of athletic perfection in baseball already starts in
the minor leagues and has lead to the publication of many textbooks
on specific technical aspects [Stewart 2002; House 2000].

In recent years, the athletes’ demand for tools to accurately
measure and analyze their technical performance has been backed
by similar interests from the media. Today, many sports enthu-
siasts expect concise analysis and visualization of a sports event
during or after the broadcast on TV. In consequence, many re-
searchers have approached baseball from the scientific and tech-
nological point of view. The physics of pitching and batting has
been thoroughly analyzed in [Adair 2002]. Alaways examined in
his PhD thesis [1998] the aerodynamics of a curve-ball. He used
a system with ten high-speed video cameras operating at 240 Hz
to capture the ball trajectory. Initial flight parameters of the ball
were not measured but deduced from the trajectory and a physical
model of ball flight. During the Summer Olympics 1996 in At-
lanta, Alaways used two 120 Hz high-speed video cameras to track
ball positions along the flight trajectory [Alaways et al. 2001]. The
K-Zone system [Gueziec 2003; Gueziec 2002] is technically simi-
lar and designed to track the trajectory of a baseball from multiple
video streams in real-time using color information and a Kalman fil-
ter. In other popular sports similar systems have been investigated.
The LucentVision system [Pingali et al. 2000] enables tracking of
the player positions and the ball trajectory in tennis matches from
video images. The ball position is tracked using an algorithm based
on ball color and frame-differencing [Pingali et al. 1998]. Rotation
axis and spin are not measured. In [D’Orazio et al. 2002], a mod-
ified Circular Hough Transform is used to follow the ball in video
broadcasts of a soccer game.

Due to the limited video resolution, the previously mentioned
systems do not provide the same spatial accuracy as our approach,
which uses high-resolution image sensors built into digital still
cameras.

In this work we will demonstrate that stroboscope photography
is not only an appropriate method to accurately track the ball tra-
jectory but also to track the complex articulated motion of the hu-
man hand. Many different approaches to tracking articulated hu-
man body motion have been investigated in the past, spanning from
mechanical over magnetic to optical methods that either rely on op-
tical markers on the human body or set aside any form of intrusion

into the scene [Aggarwal and Cai 1999; Gleicher et al. 2001]. Com-
mercial optical motion capture systems typically rely on expensive
high-framerate video cameras and markers on the body.

Optical approaches for tracking hand articulation usually derive
the hand motion from video sequences and with the support of an
explicit hand model. In [Heap and Hogg 1996], a point distribution
model is used to track hand motion. Stenger et al. [2001] employ
a kinematic model based on quadric segments and a Kalman filter
to determine hand configurations from video. In [Wu et al. 2001],
a 2D cardboard hand representation is used for pose computation.
Other approaches that rely on an explicit hand model and image
features are the Digiteyes system [Rehg and Kanade 1994] and the
work in [Dorner 1993] where colored markers on the hand show
the finger joint locations in the video images. A more appearance-
based approach is presented in [Athitsos and Sclaroff 2003] where
single hand poses are identified via comparison to a database of
rendered hand models.

In contrast to video-based motion capture systems, we apply a
marker-based tracking algorithm to the hand that derives hand poses
from still images recorded with stroboscope photography at high
accuracy.

3 Setup

We use a flexible setup to robustly acquire different types of motion
data under real-world conditions. To analyze flight trajectories of
different pitches we need to acquire image data that allows us to re-
construct the ball’s initial flight parameters (i.e. norm and direction
of its velocity, direction of its rotation axis, and spin) as well as the
3D positions of the ball along its trajectory. In addition, we want to
capture the motion of the pitcher’s hand and fingers before, during,
and after releasing the ball.

Acquiring this type of information is very challenging since the
involved speeds are considerable and the entire trajectory extends
over a relatively wide area. To complicate things even further, high
spatial accuracy is essential in both flight analysis and hand motion
capture.

In this work we demonstrate how to acquire the necessary high-
accuracy image data without resorting to expensive, specialized
hardware such as high-speed video cameras. To obtain simulta-
neously high spatial as well as temporal resolution, we apply stro-
boscope photography. We capture an image of the high-speed scene
in a darkened room using a regular digital still camera set to a long
exposure time. The scene is illuminated with a stroboscope light
that emits short light pulses at a suitable frequency. The result-
ing image depicts, superimposed, the dynamic scene at different,
closely-spaced time instants with the temporal sampling frequency
set by the frequency of the stroboscope. High spatial accuracy is
easily achieved by using recent commodity digital cameras with
multi-million pixel resolution.

To capture an entire baseball pitch, we set up our acquisition gear
in a basement room which has a central free space area of approxi-
mately 25 m length, 4 m height, and 5 m width. This is sufficient to
house the complete pitching corridor (18.44 m in length) as well as
to put up the camera and lighting equipment. As imaging devices
we employ consumer-market OlympusTMCamedia C5050 still im-
age cameras that provide a frame resolution of 2560x1920 pixels.
This camera model features a large-aperture zoom lens that can be
set to a comparatively wide angle. We use four cameras of this type
in our setup. Control software was developed enabling us to control
the settings of all four cameras from a single PC and to trigger all
camera shutters simultaneously.

Since we intend to record a fairly wide-area scene, we need a
sufficiently luminous stroboscope light source that can illuminate
a large volume at high frequencies. In our setup we use two high-
output strobe flashes which have an intensity of 5000 Lux each at



Figure 2: Ball acquisition setup. Left: a stereo camera pair (encircled in magenta) facing the black curtain on the right is capturing the ball’s
initial flight parameters. The ball is illuminated by a stroboscope (cyan). Middle: schematic illustration of the setup. The two grey cameras
correspond to the cameras in the left image. For the initial part of the ball trajectory, the measured ball positions are shown in white, recovered
rotation axes in red, and height above ground in green. The two cyan cameras observe the last third of the trajectory and correspond to the
cameras in the right image. Right: a stereo camera pair (magenta) and a strobe light (cyan) facing towards the black carpet in the back are
responsible for capturing the ball trajectory close to the “home base”.

Figure 3: Two stereo camera pairs (magenta) and a strobe light
(cyan) are placed in a semi-circular arrangement around the pitcher
to capture the hand motion of different pitches.

a distance of 0.5 m from the lamp. At full intensity, the 20 µs-long
flashes can be triggered up to 80 Hz which is sufficiently fast for
our purposes.

During recording the floor and walls are covered with black car-
pet and cloth to facilitate foreground object segmentation and au-
tomatic marker tracking. Primarily, however, the dark material ab-
sorbs most light that has not hit foreground objects, preserving con-
trast and preventing quick saturation of the multi-exposure images.
Finally, a heavy dark carpet hanging down from the ceiling at the
end of the flight corridor absorbs the impact of the ball.

In our recordings, four simultaneously triggered cameras look
at the scene from different positions. Two different arrangements
of imaging sensors and light sources are needed to record either
initial flight parameters and ball positions (see Figure 2) or the hand
motion of the pitcher (see Figure 3).

To record the baseball in flight, two stereo pairs of cameras and
two stroboscopes are used to capture the initial and final phase of
the ball flight, respectively (Figure 2). Details about the setup for
acquisition of ball motion are given in Section 4.2.

For recording the hand, the four cameras and one light source are
placed in a semi-circular arrangement looking at the pitcher from
behind and above, see Figure 3. Section 5.2 gives for further details
about this step.

A crucial and—for a large setup like ours—challenging task is
the accurate calibration of the cameras. We apply a camera model
for short focal length cameras [Heikkila and Silven 1996]. Intrinsic
camera parameters are estimated from images of a planar checker-
board pattern. Radial and tangential lens distortion are modeled
up to second order [Jain et al. 1995] and each multi-exposure im-

Figure 4: Left: baseball equipped with optical markers in pitcher’s
glove. Right: illustration of the ball coordinate system. Markers
are depicted as small colored spheres on the ball.

age is distortion-corrected prior to any further processing. Extrinsic
camera parameters are estimated using images of our 3D calibration
object, see Figure 3. Camera position and orientation are metrically
calibrated.

Finally, we rely on our professional baseball pitcher who, as
we have verified, performs different pitches with great faithfulness.
This allows us to correlate our measurements of hand motion with
the measurements of initial flight parameters and flight trajectory.

4 Tracking the Ball

4.1 Preparation of the Ball

We paint optical markers on the ball to be able to estimate its spatial
orientation from multi-exposure images. Four different types of
markers are used which differ in color and shape (red square, blue
ring, green triangle, black circle). Over the entire surface of the ball,
each marker type is used three times. Eight markers are arranged
in the ball’s equatorial plane, in 30◦-pairs and with 60◦ inter-pair
separation. The remaining four markers are located in a second,
orthogonal plane at 30◦ distance from the poles. Marker types are
assigned such that at least three different markers are visible from
any viewpoint. In addition, the (fixed) coordinate system of the
ball can be determined from the marker positions for an arbitrary
viewing direction (Figure 4).

4.2 Acquisition of Ball Motion

In our experiments we focus on the fast-ball, the curve-ball, the
slider, and the change-up, all of them performed as three-quarter



Figure 5: Multi-exposure image of the ball to recover its initial
flight parameters. Automatically detected markers are shown as
colored dots. Inset, left to right: magnified image region, result
after background subtraction, detected ball silhouette and predicted
center point, fitted circle and final center point (see Section 4.3).

Figure 6: Multi-exposure image taken by one of the back cameras.
The half-moon shape of the balls is due to the lateral position of the
stroboscope illuminating the flight path. The inset shows the same
processing steps as the one in Figure 5.

deliveries, i.e. with a release point above and to the right of the
head. Each of these pitches was recorded multiple times. Pitches
differ in the way how the hand moves during launch, giving the
ball a different initial velocity, rotation axis, and spin frequency.
Since these initial flight parameters completely determine the ball’s
trajectory, different pitches lead to different flight paths.

• The fast-ball is the fastest pitch. It has large back spin and,
depending on whether it rotates over four or only two of its
seams, the ball is called a 4-seamer or a 2-seamer.

• The change-up also exhibits back spin but has a lower velocity
and spin frequency.

• The curve-ball is released with forward spin which makes the
ball descend faster during the last phase of its flight.

• The slider is thrown with a side spin, making the ball turn to
one side towards the end of the flight.

To acquire information about the flight of a baseball, two pairs
of cameras are used that focus on different aspects of the ball tra-
jectory. The front two cameras take multi-exposure pictures of the
first 5 m of the baseball’s trajectory right after the ball has left the
pitcher’s hand. The cameras are placed 3.5 m away from the flight
path and are vertically aligned with a baseline of approximately
0.8 m, see Figure 2 (left). One strobe light is placed close to the
cameras and illuminates the scene such that the ball silhouette ap-
pears as a circular shape in the images. In both cameras’ multi-
exposure images the ball is seen at several subsequent positions
and orientations, flying from left to right in Figure 5. The num-
ber of visible ball positions is determined by the pulse frequency
of the stroboscope. At a strobe light frequency of 80 Hz, 6–10 ball
positions are captured, depending on the speed of the pitch.

The stereo camera pair in the back part of the setup records the
last third of the flight trajectory close to the “home base” where
the most interesting variations between different pitches occur. The
cameras are placed approximately 2.8 m high and 4 m apart on ei-
ther side of the flight corridor, see Figure 2 (right). A second stro-
boscope is located below the right camera and illuminates the ball
at 50 Hz. This lower frequency is chosen to better separate the ball
in the multi-exposure images. In contrast to the camera setup in the
front, the illumination direction in the back setup causes partially
illuminated ball silhouettes shown in Figure 6. We compensate for
this before reconstructing ball positions, see Section 4.3.

During recording, the shutters of the front cameras are open for
one second, while the shutters of the back cameras expose for 1.3
seconds. All cameras are triggered simultaneously. As a trade-
off between image noise and brightness, we run each camera with
ISO 200 sensitivity.

The 3D positions of the ball in flight are recovered via trian-
gulation, see Figure 7, and the orientation of the ball’s coordinate
frame is computed. Then the ball’s rotation axis and spin frequency
are determined, see Figure 7 (left). At 80 Hz, a ball at a spin rate
of 1600 rpm rotates by 120◦ between subsequent strobe flashes.
Our sampling frequency is more than twice the spin frequency and
therefore sufficiently high to fulfill the Nyquist criterion.

4.3 Reconstructing Flight Positions

In each multi-exposure image, the silhouettes of the ball in the fore-
ground are separated from the background by means of a color-
based background subtraction, thereby creating binary foreground
masks.

In both the front and back stereo pair of images, the ball silhou-
ettes’ boundary polygons are identified via a contour finding algo-
rithm (OpenCV [Intel 2002]). To correct small concavities at the
silhouette boundaries of the balls we compute the convex set of the
vertices of each boundary polygon [Slansky 1970].

First estimates of the projected ball center locations in each
image are found via fitting ellipses to the silhouette boundary
points. In each stereo pair of images correspondences between
projected ball center locations are established via epipolar geom-
etry [Faugeras 1993]. Approximate estimates of the 3D ball center
locations are obtained by means of triangulation from correspond-
ing ellipse centers in each stereo pair. The center estimates in the
image planes are further improved by fitting implicit circle models
to the silhouette boundaries by means of a Circular Hough Trans-
form [Ballard 1981] in a local neighborhood of each ellipse center.
Knowing the radii of the projected balls from the first 3D recon-
struction, the Hough Transform search space reduces to two dimen-
sions (center location). The final 3D positions are found from stereo
reconstruction of the circle centers.

The whole fitting pipeline is illustrated in the insets of Figure 5
and Figure 6 for the front and back cameras, respectively. The de-
scribed procedure robustly recovers 3D ball positions even if the
ball silhouettes are only partially visible (Figure 6).

4.4 Reconstructing Initial Flight Parameters

After the 3D ball positions in the front and back part of a flight
trajectory have been reconstructed, the initial flight parameters for
that data set, i.e. velocity, rotation axis, and spin frequency, need
to be determined, cf. Figures 1 (left) and 7 (left). Figure 8 gives a
brief overview of the employed technique: from the reconstructed
3D marker positions, an initial guess for the flight parameters is
extrapolated, which is then refined using the ball model from Fig-
ure 4 (right).

We identify the projected ball markers in the front stereo pair of
images via color-based region detection and establish correspon-



Figure 7: Reconstructed initial flight parameters (left) and flight po-
sitions (right). Distance of the balls from ground is shown in green,
rotation axis in magenta, and initial velocity direction in yellow.

Figure 8: Stages of the fitting process. Left to right: position of
markers, result from prediction, and result from final fitting.

dences across stereo images via the epipolarity constraint. The
markers’ 3D positions are found via triangulation and each marker
is assigned to the closest ball position in 3D.

From the sequence of orientations of the ball’s coordinate sys-
tem immediately after release of the ball, its initial spin frequency
and rotation axis are derived. In theory, it is sufficient to know
the 3D positions of the ball’s center and of two uniquely identified
markers to determine its orientation. Unfortunately, it is impossi-
ble to decide from the color of a marker alone which one of the
three instances of this marker type on the ball this is. In addition,
misclassifications due to noise in the data needs to be considered.
Physics tells us that the orientation of the rotation axis and the spin
frequency of an ideal flying ball do not change over time (Sect. 4.5).
Considering the above we determine the initial flight parameters by
means of the following numerical optimization scheme.

The algorithm processes the n subsequent ball positions at the
beginning of the trajectory separately and in their temporal or-
der. The orientation of the ball at position k with respect to the
world coordinate system can be represented as a rotation matrix
R(αk,βk,γk), where (αk,βk,γk) are Euler angles. Our goal is to
find for each subsequent pair of 3D ball positions at k − 1 and k
the rotation axis ωk−1,k and rotation angle δk−1,k that correspond to
the relative transformation Rk−1,k between R(αk−1,βk−1,γk−1) and
R(αk,βk,γk).

At position k, the algorithm exploits temporal coherence by pre-
dicting the orientation of the ball R(αpred,βpred,γpred) by rotat-
ing orientation R(αk−1,βk−1,γk−1) further by δk−2,k−1 around axis
ωk−2,k−1. Starting from that parameter set (αpred,βpred,γpred) the
algorithm uses Powell’s method [Press et al. 1992] to find parame-
ters (αk,βk,γk) that minimize the energy function:

Ek(α,β ,γ) = a1E1 + a2E2

= a1 ∑
i∈M

(∆m(i))2 + a2 ∑
j∈{x,y,z}

(∆ax( j))2 , (1)

with a1 and a2 being weighting factors. M is the set of detected
markers at ball position k, ∆m(i) is the angular distance between
reconstructed marker i and the closest marker of the same type
in the ball model in the current orientation. ∆ax( j) is the an-
gular distance between the local coordinate axis j ∈ {x,y,z} of
the ball in orientation (αk,βk,γk) and the same axis in orientation

R(αpred,βpred,γpred).
The rotation axis ωk−1,k and rotation angle δk−1,k are

computed from the relative transformation Rk−1,k between
R(αk−1,βk−1,γk−1) and R(αk,βk,γk) [Murray et al. 1994].

Having the sequence of rotation angles and the stroboscope fre-
quency, the spin frequency f can be derived.

In our method we do not strictly enforce the constancy of the ro-
tation axis and spin frequency, but instead introduce this criterion as
a weighted regularization term E2 to compensate for possible mea-
surement errors and ball precession. For the initial rotation axis,
we average the rotation axes over the sequence. The direction of
the initial velocity vector coincides with the direction of the con-
necting line between the first two ball positions, its magnitude is
computed from the strobe frequency and the Euclidean distance of
the first two ball positions. For the first two ball positions the op-
timization is run with a2 = 0 in Equation (1). If this initialization
fails due to too few or badly located markers, a manual initialization
is feasible.

In our experiments we were still able to recover valid initial
flight parameters even if for some balls none or just one marker
was found. We obtained almost 100 % probability of correct de-
tection for the black markers and 90 % for the red markers. The
blue and green markers were more difficult to find. In a compar-
ative experiment it turned out that a different color scheme with
more luminous marker colors significantly increases the robustness
of marker detection.

4.5 Validation

For the ball flight data (3D positions and initial parameters), no
ground truth information is available. To validate our acquisi-
tion setup and tracking algorithms, we show that the data obtained
through our measurements and processing are consistent with the
prediction of a physically based model that takes into account the
dominating forces acting on a spinning ball traveling through air.
In accordance to [Adair 2002] and [Alaways et al. 2001], we com-
pute the velocity v(t) of a baseball with mass m using the first-order
ordinary differential equation

m v̇(t) = FG + FD(v(t)) + FM(v(t)) (2)

with the gravitational force FG, the drag force (or air resistance)
FD, and the Magnus force FM defined as:

FG = m ·g ,

FD(v(t)) = −
1
2
·CD(v(t)) ·ρ ·A · |v(t)|2 ·

v(t)
|v(t)|

,

FM(v(t)) =
1
2
·CL(v(t),ω) ·ρ ·A · |v(t)|2 ·

ω ×v(t)
|ω ×v(t)|

,

where g denotes gravity, ρ air density and A the cross-sectional area
of the ball. The vector ω represents the spin axis of the ball, which
is assumed to be constant during the flight of the ball1. To compute
the drag coefficient CD(v(t)), we have fitted a polynomial curve to
the data presented in [Adair 2002] and [Alaways et al. 2001]. After
computing the Reynold’s number Re(v(t)) [Adair 2002] the drag
coefficient is evaluated as

CD(v(t)) = 2.23 −

0.28342 ·10−4 ·Re(v(t)) + 0.13179 ·10−9 ·Re(v(t))2 −

0.25083 ·10−15 ·Re(v(t))3 + 0.17083 ·10−21 ·Re(v(t))4 .

1For a perfectly homogeneous ball, the spin axis does not change. In
practice, a small precession might occur due to the inhomogeneous density
of natural materials (cork, leather) used for baseballs.



pitch type εavg εmax ^(vref
0 ,v0) |vref

0 | ∆(|vref
0 |, |v0|) ^(ω ref,ω) |ω ref| ∆(|ω ref|, |ω|)

fast ball (2 seams) 18 mm 39 mm 1.3◦ 63.2 mph 1.9 mph 0.4◦ 1596 rpm 22 rpm

fast ball (4 seams) 18 mm 41 mm 2.5◦ 64.2 mph 0.8 mph 0.1◦ 1612 rpm 17 rpm

curve ball 19 mm 39 mm 0.7◦ 61.9 mph 1.4 mph 0.3◦ 1623 rpm 7 rpm

slider 15 mm 25 mm 3.8◦ 65.7 mph 0.7 mph 0.4◦ 1491 rpm 13 rpm

change-up 13 mm 35 mm 1.4◦ 60.6 mph 1.1 mph 0.3◦ 1258 rpm 32 rpm

Table 1: Comparison of our measurements with reference trajectories obtained from a physically based model (Section 4.5). For a variety of
pitches, the average error εavg and the maximum error εmax between the reference trajectory and our measured ball positions are given (Eu-
clidean distance between trajectory and center of ball). The precision of our measured initial flight parameters is specified by: ^(vref

0 ,v0) (an-
gle between reference and measured velocity direction), ∆(|vref

0 |, |v0|) (difference between reference and measured initial speed), ^(ω ref,ω)

(angle between reference and measured spin axis direction), and ∆(|ω ref|, |ω|) (difference between reference and measured spin frequency).
Absolute values of reference initial speed |vref

0 | and spin frequency |ω ref| are given for the sake of completeness.

According to [Alaways et al. 2001], the lift coefficient CL can be
computed as CL(v(t),ω) = 1.5 · r · |ω|/|v(t)| . For the special case
of a fastball across two or four seams, better approximations of CL
can be obtained from the diagrams in [Alaways et al. 2001]. Given
the initial ball position p0 = p(0), the initial velocity v0 = v(0),
as well as the initial spin axis ω and frequency f = |ω|, the flying
ball’s position p(t) at time t is computed via integrating v(t) over
time. Using the Runge-Kutta-Fehlberg integration scheme DOPRI5
from [Hairer et al. 1993] we solve ODE (2) for v(t).

Finally, we can compute the reference trajectory of a baseball
for a given set of initial flight parameters p0, v0, and ω and com-
pare it to our measurements. Since the trajectory computed from
the ODE (2) is quite sensitive with respect to variations in the ini-
tial flight parameters, we search for an exact solution of (2) that
minimizes the error both for the measured ball positions and for
the measured initial flight parameters using Powell’s optimization
method [Press et al. 1992]. The resulting optimal reference trajec-
tory is then used to compute the measurement error (Table 1).

The comparatively low average speed of the pitches is due to the
high number of pitches per recording session which exceeded the
usual training pensum of a baseball professional by far.

5 Tracking the Hand

5.1 Preparation of the Pitcher’s Hand

In order to determine the locations of the finger joints in the
recorded images we have to mark them on the pitcher’s hand. The
pitcher wears a thin, transparent rubber glove onto which colored
markers made of reflective tape are glued, see Figure 9 (left). The
markers are placed on the joint positions, on the finger nails, and
on three distinct positions on the back of the hand. Four different
marker colors are distributed such that the distance between any two
markers of the same color is maximized. In total 18 positions on
the hand are tagged and assigned a unique position label. To facili-
tate identification of the markers in the multi-exposure images, the
skin underneath the glove is painted with black make-up. During
recordings the pitcher wears black clothes and a black face mask
to prevent misclassifications of moving body parts other than the
pitching hand.

5.2 Acquisition of Hand Motion

For acquisition of hand motion, all four cameras and one stro-
boscope are positioned in a semi-circular arrangement behind the
pitcher, see Figure 3. In front of the pitcher, the walls and the floor
of the flight corridor are covered with black cloth. All cameras are

Figure 9: Left: Markers for tracking are attached to the pitcher’s
hand. Right: Corresponding marker positions on the personalized
hand model.

Figure 10: Multi-exposure image of one camera recording the hand
motion during pitching. Inset: reconstructed hand marker positions
for two hand poses.

focused on the region where the pitcher releases the ball. The cam-
era positions are chosen in such a way that two cameras observe
the hand motion from the left and two from the right side of the
pitcher’s location. This way occlusions of the hand markers dur-
ing the complex pitching movement are minimized and sufficiently
separated exposures of the hand in the images could be obtained.
The strobe light is located directly behind the pitcher such that the
focus of illumination coincides with the release position of the ball.
During recordings the stroboscope operates at 75 Hz, a frequency
that leads to a high number of visible hand positions sufficiently
separated in the images for all pitch types. For recording all four
cameras are triggered synchronously with an exposure time of one
second. We have recorded the same four pitches as for the trajectory
measurements. Again, all pitches were performed as three-quarter
deliveries.



5.3 Tracking the Hand Position

The first step in reconstructing the hand motion is to separate the
marker positions from the background in each of the four multi-
exposure images using background subtraction. Since all unim-
portant parts of the scene are colored black, the reflective markers
emerge very brightly in the images, see Figure 10. The locations
of the markers in each photograph can be identified with a similar
technique as described in Section 4.4 for the ball markers. For each
marker type a color interval is defined. Connected image regions
above a minimum size whose pixels fall into one of the intervals
are considered as projected marker locations. The projected cen-
ters of the markers are approximated as the centers of gravity of the
marker regions. The correspondences over different camera views
are established via epipolar geometry. Technically, the left and the
right camera pair are treated as separate stereo pairs. In a first step
the positions of visible markers are triangulated in each stereo pair
separately. If a marker position is reconstructed from both stereo
pairs, its position in 3D space is averaged.

Currently each of the 18 markers at each hand position is associ-
ated with the correct position label in an interactive procedure. An
automatic approach that clusters 3D marker positions into separate
hand clusters and assigns the marker labels in each cluster accord-
ing to the colors of their neighboring markers is also feasible.

For motion reconstruction we limit ourselves to those hand posi-
tions in which the three markers on the back of the hand are visible
for at least two cameras. Only then are the position and orienta-
tion of the hand root fully determined. Our setup is arranged such
that this condition is fulfilled for an average of four hand positions
around the release point. These hand positions are also the most
interesting ones in terms of their motion characteristics since they
represent that part of the motion cycle in which the hand and finger
movements determine the specific rotation axes and spin frequen-
cies of different pitch types. For some pitches it is not possible
to reconstruct the position of all finger joints in each reconstructed
hand position. This can happen for those pitch types where a finger
is required to be ahead of the ball in the release moment such that
it is occluded from all cameras.

5.4 Visualization of the Hand

For visualizing the movement of hand and fingers we use an ani-
matable hand model. In particular, our hand model is composed of
a skin mesh and the underlying bone structure, see Figure 9 (right).
Animation of the hand model is controlled by joint rotation param-
eters specified over time. We employ a physics-based approach to
compute the deformation of the skin tissue for a given configura-
tion of the bones inside the hand. The skin mesh is identified with a
mass-spring network with biphasic stiffness coefficients computed
according to [Van Gelder 1998]. For the sake of brevity, we refer
to the approach presented in [Albrecht et al. 2003] for a detailed
description of this physically based animation technique.

To animate our hand model we have to make sure that it matches
the pitcher’s hand in size and proportions. To this end we apply a ra-
dial basis warping function as described in [Albrecht et al. 2003] to
create a “personalized” hand model that matches the size and pro-
portions of the pitcher’s hand. The warped model is then equipped
with markers at the same positions as on the glove, cf. Figure 9
(right).

Finally, the personalized hand model is animated using joint ro-
tation parameters that have been computed automatically from the
marker positions obtained from the tracking process. This conver-
sion from marker positions to joint rotations proceeds as follows.
First, we compute the position and orientation of the back of the
hand by aligning the three markers on the back of the (personalized)
hand model to the corresponding tracked marker positions. Next,
we traverse the (anatomical) hierarchy of the hand model along

each finger. For each joint, we compute the rotation angle that mini-
mizes the distance between the position of the next marker along the
hand model’s hierarchy and its corresponding tracked marker. After
traversing each finger up to its tip, all joint rotations are specified.
We use key frame interpolation for the joint rotation parameters to
compute smooth animations.

6 Results

For validation of our acquisition setup and tracking algorithms, we
have performed the consistency check described in Section 4.5. As
a result, we conclude that our measurements are very accurate. Av-
erage errors between the measured 3D ball position and the pre-
dicted flight trajectory are as low as 13–19 mm, which corresponds
to about 18–25 % of the diameter of the baseball.

The calibration error for the camera setup was on average below
one pixel in the image plane. This assures that a high-accuracy 3D
reconstruction for the ball and the hand markers is feasible.

For the ball, the average distance between a measured feature in
the image plane and its reprojected 3D location is below two pixels.
The reprojection error for the center of the ball is about one pixel.
Part of the deviation between measured and predicted ball positions
might result from small inaccuracies in feature localization in the
image plane.

Due to the lack of ground truth data for the hand motion we
cannot assess the reconstructed hand motion data directly. The re-
projection errors of the reconstructed marker positions of the hand
are similarly small as those obtained for the ball measurements.

The high-quality data we acquired from different baseball
pitches permit new ways of visualization that provide interesting
feedback to the athlete, the coach, and the sports enthusiast. The
flight of the baseball can be visualized from any camera perspective,
see Figure 11. In particular, the ball’s initial flight parameters and
their relation to the flight trajectory can be rendered into instructive
sequences as is demonstrated in the accompanying movie. Visu-
alizing the hand motion during release of the ball in slow motion
provides a new type of visual feedback for the performing pitcher.
Figure 12 depicts two snapshots of such an animation.

The multi-exposure images acquired for tracking the hand mo-
tion show both the hand poses and the ball markers. We have thus
reconstructed hand motion and flight parameters from the same set
of stroboscope photographs. This way it is possible to visualize the
influence of finger motion on the flight parameters of the ball. In
Figure 1, the characteristic finger motion applied to add the nec-
essary spin to a slider is clearly visible. In particular, the middle
finger exerts high pressure on the ball to build up high spin. Due
to the acceleration of the middle finger during the pitch, this finger
moves further than the other fingers after release of the ball. The
rotation of the ball in Figure 1 is consistent with the movement of
the fingers.

7 Conclusion and Future Work

We have introduced a setup to capture high-speed, large scale mo-
tion via stroboscope photography using off-the-shelf digital still
cameras. A method for automatic reconstruction of the 3D posi-
tions and initial flight parameters of a baseball from multi-exposure
images is described and validated. It is shown that from the same
type of images it is also possible to reconstruct complex and fast
articulated hand motion.

Our system provides comprehensive and precise measurements
of both pitching motion and flight parameters for a variety of base-
ball pitches. In combination with our visualization techniques,
these measurements lead to a better understanding of the charac-
teristics of baseball pitches and resulting flight trajectories. Thus,



Figure 11: Visualization of a change-up trajectory in a stadium.
The yellow path shows the reference trajectory obtained from the
physical model. The average offset of the measured ball positions
to this reference path is as low as 13 mm.

Figure 12: Visualization of hand and fingers during and after release
of the ball. In this change-up pitch, the ball is spinning backwards
about a rotation axis orthogonal to the flight direction. This can
be seen by comparing the direction of the axes of the ball’s local
coordinate frame.

the system provides an instructive tool for pitchers and coaches, en-
abling them to improve their pitching technique through precise vi-
sual feedback. The demand of such visual feedback was confirmed
during our recordings, when we experienced that the athlete’s per-
sonal estimate of his performance sometimes deviates from the
measured data.

We aimed at a high accuracy system that can be used to ana-
lyze high-speed motion on a limited spatial and temporal scale. We
don’t see our approach as a replacement for traditional motion cap-
ture techniques, but as a cost effective supplement which can be
used in cases where traditional techniques fail. The baseball pitch
is just an example for the application scenarios we have in mind.
Other possible scenarios are tennis serves or the athlete’s motion
in several track and field events such as javelin or discus. Tennis
players, for instance, would benefit from a precise analysis of the
correlation between the movement of their racket, speed and spin
of the ball, and the resulting ball trajectory during a serve.

In the future we plan to extend our framework to enable captur-
ing human full-body motion by means of stroboscope photography.
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