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Abstract

The acquisition of human motion data is of major impor-
tance for creating interactive virtual environments, intelli-
gent user interfaces, and realistic computer animations. To-
day’s performance of off-the-shelf computer hardware en-
ables marker-free non-intrusive optical tracking of the hu-
man body. In addition, recent research shows that it is
possible to efficiently acquire and render volumetric scene
representations in real-time. This paper describes a system
to capture human motion at interactive frame rates without
the use of markers or scene-intruding devices. Instead, 2D
computer vision and 3D volumetric scene reconstruction al-
gorithms are applied directly to the image data. A person
is recorded by multiple synchronized cameras, and a multi-
layer hierarchical kinematic skeleton is fitted to each frame
in a two-stage process. We present results with a prototype
system running on two PCs.

1 Introduction

Recently, the field of human motion capture has brought
together researchers from computer vision and computer
graphics. The acquisition of human motion data is a pre-
requisite for the control of artificial characters in virtual re-
ality and augmented reality applications [1], as well as in
computer animation and video games [22]. The analysis of
human motion, e.g. gesture recognition, can be used for
intelligent user interfaces and automatic monitoring appli-
cations [7].

Existing optical motion capture systems only work in
a very constrained scene setup. The person to be tracked
has to wear markers, and many cameras have to observe
the scene from different viewpoints to prevent occlusions
[9, 12]. The first marker-free vision-based motion cap-
ture systems have only recently become feasible thanks to

increasing computational power of off-the-shelf hardware.
Non-real time approaches [13, 8, 26] use features extracted
from video frames to fit simple kinematic skeleton mod-
els with volumetric limb representations to human body
poses. Image differencing [14] and silhouette skeletoniza-
tion [10] are also used to fit simple kinematic models to
video streams. The use of TV image sequences for the ac-
quisition of articulated motion is presented in [32]. In [24]
an implicit-surface human body model is fitted to video ma-
terial. More recently, Bregler et. al. use the combination
of optical flow, a probabilistic region model, and the twist
parameterization for human body joints to fit a kinematic
model to video footage [3]. Existing real-time systems use
comparably simple models, such as probabilistic region rep-
resentations and probabilistic filters for tracking [31], or
combine feature tracking and dynamic appearance models
[11]. Unfortunately, these approaches cannot support so-
phisticated human body models like kinematics skeletons
or dynamic body representations.

At the same time, a new method for the acquisition and
efficient rendering of volumetric scene representations ob-
tained from multiple camera views, known as shape-from-
silhouette or the visual hull [17], has been proposed. Early
approaches in the field construct discrete three-dimensional
grids of volume elements (voxels) from a set of silhouette
images of a scene, a method known as voxel carving or vol-
ume intersection [28, 25, 5]. More recently, it was shown
that a polyhedral representation of the visual hull can be
acquired and rendered in real-time [20]. An image-based
approach to visual hull construction samples and textures
visual hulls along a discrete set of viewing rays [21]. State-
of-the-art graphics hardware can be used to accelerate the
construction of slices of the visual hull [18]. Most work fo-
cuses on improving the quality of the reconstructed scene
[15].

Only recently, methods have been presented that use
real-time volume reconstruction to capture human motion.
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In [4], an Expectation-Maximization-like ellipsoid fitting
procedure is used, and in [19], a force-field exerted by the
voxels is used to find the configuration of a kinematic chain
model.

In this paper, we present a new approach to full-body hu-
man motion capture which combines efficient color-based
optical tracking of human body features with the voxel-
based reconstruction of the person’s visual hull from mul-
tiple camera views. The system consists of an online and
an off-line component. In the online component, the vi-
sual hull is reconstructed from four camera views, and the
3D positions of the head, hands and feet are automatically
identified and tracked. In the off-line component, a simpli-
fied humanoid kinematic skeleton is fitted to these 3D po-
sitions using a saved stream of visual hulls and 3D feature
locations.

A second layer extends the skeleton by more detailed
arm and leg representations and cylindrical volume samples
for modeling the volumetric extent of the extremities. The
more detailed model is fitted to the visual hull in order to
recover the exact pose of arms and legs. This hybrid ap-
proach benefits from the strengths of both sources of infor-
mation (features+volume model) and compensates for indi-
vidual weaknesses of the separate techniques.

The structure of the paper follows the structure of our
system. Sect. 2 starts with an overview of the system ar-
chitecture. The real-time component of our system is de-
scribed in Sect. 3 The off-line component is described in
Sect. 4. Results with the prototype implementation are pre-
sented in Sect. 5. The paper concludes with a summary and
a discussion of future work in Sect. 6.

2 System Overview

2.1 Software architecture

The online component of our system is distributed on
two PCs. The software is implemented as a distributed
client-server application (Fig. 1). Currently, there are 2
clients, each of which is running on a 1 GHz single pro-
cessor Athlon PC connected to two Sony™ DFW-V500
IEEE1394 video cameras that run at a resolution of 320x240
in color mode. Both clients perform a background subtrac-
tion (Sect. 3.2), as well as the computation of a partial visual
hull for the 2 connected camera views in real-time. Addi-
tionally, the client controlling the two front view cameras
identifies and tracks the positions of hand, head and feet at
interactive frame rates (see Sect. 3.2 and Sect. 3.3). The
partial visual hulls from both clients are transferred to the
server application which builds the full visual hull and ren-
ders it using OpenGL. The server also sends the trigger sig-
nals to the cameras for synchronization. The software ar-
chitecture scales easily to more cameras and more clients.

Figure 1. System architecture

The model fitting is currently implemented as a separate ap-
plication which works with recorded visual hulls and 3D
locations acquired with the online system.

2.2 Scene setup

The person to be tracked is supposed to move inside a
confined volume. The scene is observed from four synchro-
nized cameras from different directions. We require that
there are two cameras observing the person from two nearby
positions in front (Fig. 2). The person moves barefooted and
needs to face these cameras allowing only limited rotation
around the vertical body axis. The cameras are calibrated
using Tsai’s method [30].

3 Online System

3.1 Initialization

In the first frame, the person is supposed to stand in an
initialization position, facing the two frontal cameras, with
both legs next to each other and spreading the arms hori-
zontally away to the side at maximal extent.

3.2 Silhouette Segmentation

The segmentation step consists of two parts. First, the
person’s silhouette is separated from the background in each
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Figure 2. Scene setup: Camera studio, cal-
ibration pattern on the floor, 4 cameras
marked by circles

camera perspective. Then, the silhouettes obtained from the
front-view cameras are segmented in order to identify hand,
feet and head. The former step is performed for every time
step, the latter is performed for the initial frame only.

Separating the person from the background is done by
using a background distribution for each camera perspective
consisting of a mean image ���������
	 and a standard-deviation
image ���
�����
	 . These are generated from several consecu-
tive video frames of the static background scene. For the

Figure 3. Video frame after background sub-
traction (l) and corresponding silhouette (r)

silhouette extraction a method originally proposed in [4] is
used which proves to be robust against shadows cast by the
person on the floor and the walls. If a pixel differs in at least
one color channel by more than an upper ��� threshold from
the background distribution��� ��������	������������
	 ��� ����������������	
it is classified as foreground. If its difference from the back-
ground statistics is smaller than the lower threshold ��� in all
channels it is surely a background pixel. All pixels which
fall in between these thresholds are possibly in shadow ar-
eas. Shadow pixels are classified by a large change in in-
tensity but only small change in hue. If

� �
�����
	 is the color

vector of the pixel to be classified, and ���������
	 is the corre-
sponding background pixel color vector, their difference in
hue is  "!$#&%('&)�*�+ � ��������	��&���
�����
	�,� �������
	 �-� ����������	 �/.
If
 � ��021435� � 0&6 the pixel is classified as foreground, else

as shadow. A 0/1-silhouette image for each camera is com-
puted this way.

The binary silhouette images of the person standing in
the initialization position seen from the two front view cam-
eras are segmented using a Generalized Voronoi Diagram
(GVD) decomposition (see Fig. 5). Often used in free
space segmentation of cognitive topological maps of mo-
bile robots [27, 29, 16], the Generalized Voronoi Diagram
is the set of all points in the silhouette which is equidistant
to at least two silhouette boundary points.

The GVD point set can be used to segment the silhou-
ette into distinct regions by searching for critical points,
i.e. points locally minimizing the clearance to the silhou-
ette boundary. These points are used as centers for border
lines between adjacent regions in the silhouette. These lines
connect the two boundary pixels closest to the critical point
(Fig. 4). Since in the silhouette the boundaries to the head,
hand and feet are identified by constrictions, the algorithm
nicely segments these parts from the rest of the body. This
way, the position and the regional extent of these body parts
are extracted.

Silhouette boundary

GVDregion 1

Critical points

region 3

region 2

Figure 4. GVD with critical points

The connectivity of the recovered silhouette regions can
be represented by a graph connecting the region centers. For
the case of the human silhouette in the initialization posi-
tion, the five terminating nodes in the connectivity graph
correspond to the head, the hands and the feet of the person.

3.3 Tracking head, hands and feet

To track the motion of body parts in 2D, we imple-
mented a fast tracking strategy. We use a continuously
adaptable mean-shift algorithm which is capable of track-
ing the mean of dynamically changing probability distribu-
tions, originally developed for face tracking [2, 6]. From
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Figure 5. Silhouette segmented by General-
ized Voronoi Diagram decomposition

the segmentation step, it is known which pixels belong to
the head, the hands and the feet for both front camera views
at � !��

. The HSV color is the principal cue used for
tracking body parts. The color range of human skin in
the camera view is different depending on lighting condi-
tions and camera adjustment. Since the locations and ex-
tent of the head, the hands and the feet are known, their
color values in the image plane can be used to compute an
average skin color for each frontal camera view, � * and
��� . These values are used to define tolerance intervals in
color space, � � * ���	��

����������� 
���� ��� *�� �	��

����������� ��� �!�#"
and � � � �$�	��
������%���&� 

��� ��� � � �	��

����������� ��� �!�#" . For the
colors in these intervals, color histograms ' * and ' � are
computed based on the video frames with the person in ini-
tialization position.

After the first video frames, the algorithm proceeds as
follows. For each new frame, an intermediate gray-scale
image is computed that contains for each pixel an approx-
imation to the probability of belonging to one of the de-
sired regions. This can be done by back-projecting the his-
tograms ' * and '(� into the corresponding video frames
after background subtraction. Alternatively, we can simply
filter out all pixels in the allowed color interval and set all
pixels passing the test to the maximum pixel value. In prac-
tice, this leads to fast convergence of the tracking algorithm.

We use a separate continuously adaptable mean shift
tracker for each of the five body parts in both front views
that takes the intermediate gray-scale images as input.
Within a limited rectangular search window, gradient infor-
mation is used to iteratively converge to the mean of the
probability distribution (see [2] for details). Starting with
the mode position in the previous frame, the center of the
search window after convergence is taken as the new body
part position in the current frame. At time step � !)�

the
trackers are initialized with the center positions found dur-
ing the Voronoi decomposition step.

The whole procedure is run for each video frame ac-

Figure 6. Screen-shots of server showing the
visual hull (l) and silhouettes with tracked fea-
ture locations (r)

Figure 7. Visual hulls from 4 camera views
with scene bounding box

quired from the two front view cameras. Fig. 6 shows a
screen-shot of our system where the tracked body parts are
marked by circles. We assume that the colors of the head,
the hands and the feet are sufficiently different from the col-
ors of the clothes that the person wears. Head, hands and
feet colors need to be similar in HSV space for our method
to work properly. Requiring that the person moves bare-
footed is the easiest way to fulfill this constraint. The draw-
back of the method is that in case of overlapping body parts,
the trackers can be mislead.

Once their locations in the front camera views are de-
termined, the 3D positions of the body parts are computed
by triangulation. We assume that the tracked centroids of
the hands correspond to the projected wrist joint locations,
the centroids of the feet to the ankle joint locations, and the
centroid of the head to the model root joint.

3.4 Volume reconstruction

From the silhouettes of the moving person, we recon-
struct a voxel-based approximation to the visual hull at
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every time step. Our approach adapts the voxel carving
method and is similar to the algorithms presented in [4] and
[19].
The box in space in which the person is allowed to move is
subdivided into a regular grid of volume elements.

In our distributed implementation, each voxel is simul-
taneously projected into the views of the two cameras con-
nected to one client computer. If it re-projects into the sil-
houette of the person in both views, it is classified as oc-
cupied space. The partial hulls from each client � , ��� , are
run-length-encoded and transferred to the server applica-
tion via LAN. On the server, the complete visual hull ���
is constructed by intersecting the volumes, ��� ! � *�� � � .
The intersection can be efficiently implemented using bit-
wise boolean operators. The voxel projections can be pre-
computed for each static camera view. Two example visual
hulls reconstructed from four camera views can be seen in
Fig. 7.

4 Off-line system

4.1 Initialization

The model fitting application (off-line component in
Fig. 1) takes visual hulls and 3D feature locations that are
saved by the online system as input. The dimensions of the
kinematic skeleton need to be adjusted to the body dimen-
sions of the moving person. This is either done by manu-
ally measuring the limb lengths and loading them into the
application, or by an interactive step. In this step the user
marks shoulder, hip, elbow and knee locations in the two
camera frames showing the person in the initialization posi-
tion from front. Together with the tracked positions, the 3D
locations of all joints can be computed and the lengths of
the body segments are derived. The thicknesses of the arms
and legs are set by the user.

4.2 The Skeleton

The model uses a 2-layer kinematic skeleton to which
volume samples representing the extension of body parts
are attached. The first layer of the skeleton consists of a
structure of 10 bone segments and 7 joints (including the
root). The rotation parameters for the joints and the transla-
tion of the model sum up to 20 degrees of freedom for the
skeleton.
The second layer extends the layer-1 structure by upper arm
and forearm segments, as well as upper leg and lower leg
segments (Fig. 8). Each of these segments consists of two
bones attached to a layer-1 arm or leg segment. These bones
are connected by a 1-degree-of-freedom revolute joint that
serves as a simplified model for the elbow and the knee
joint. As an example, this structure is shown for the arm

Figure 8. Skeleton layer 1 (l), skeleton layer 2
(r)

in Fig. 9. The lengths of the upper arm 
����	��
�6 and lower
arm 
 �
��� 
�6 are fixed and obtained from the initialization
step. During model fitting, the length of the layer-1 segment

������,� 
 varies, and the joint angle � of the elbow is fully de-
termined by the cosine theorem (Fig. 9) . As an additional
degree of freedom, the rotation � around the axis along
the layer-1 segment is introduced. For the whole layer-2
skeleton, 4 additional degrees of freedom result since the
� -angles are fully determined by the layer-1 skeleton.
To model the extent of limbs, volume samples attached to
the arm and leg structures on layer 2. These are point sam-
ples taken from a cylindrical volume around the extremities
(see Fig. 8). This construction for legs and arms is the pre-
condition for our model fitting strategy on layer 2.

The skeleton structure is hierarchical, and each segment
has its own local coordinate system. Revolute joints are pa-
rameterized by one angle. Higher degrees-of-freedomjoints
can be parameterized by ZYZ-Euler angles or Quaternions
[23], or the joint transformation can be set directly in form
of the corresponding matrix (Sect. 4.3.1). In order to ap-
ply our model parameters to a skeleton containing the full
set of joints and bones on just one layer (e.g. H-Anim), an
additional step has to be taken. The rotation matrices de-
fined by the shoulder and hip joints have to be multiplied
by matrices rotating the layer-1 arm or leg segments onto
the corresponding upper arm and leg segments in the local
coordinate system.

4.3 Model fitting

The model is fitted for each video frame in a two-stage
process which is described in the following.
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Figure 9. Arm structure of model layer 2

4.3.1 Fitting the first skeleton layer

The 2D feature tracking (Sect. 3.3) reports a set of 3D goal
locations for the head, the hands and the feet. From the ini-
tialization, the skeleton dimensions are known. By assum-
ing that the person is moving with an upright upper body
and with only slight rotation around the vertical body axis,
all joint locations for the layer-1 skeleton are known for ev-
ery time step. For each video frame, the first layer of the
kinematic skeleton is fitted into this point set. This is done
by translating the model root (located at the head) to the cur-
rent 3D head position. The distances between the left and
right shoulder and wrist as well as the left and right hip and
ankle are computed, and the lengths of the corresponding
layer-1 segments are adapted to these values. The skeleton
is represented as a hierarchical kinematic chain. Each joint
corresponds to a rotation ��� and a translation ��� , which can
be represented as a combined matrix � ����� ���	��	 in homoge-
neous coordinates. Knowing the coordinates of a point in
the joint coordinate system 
 � , its world coordinates can be
found by 
�� !���
 1 )�*����� � ��� � ��� � 	�� ��
�� , i.e. by multiplying

�� by the preceding � joint transformations in the skeleton
hierarchy. In our case, all the joint transforms apart from
the shoulder and hip transforms are known. For the latter,
only the translations � � are known. The unknown rotations
can be easily computed which is shown for the example of
the left arm (Fig. 10). Let 
 ������� 
 be the length of the left
arm segment on layer-1 and 
 � be the world coordinates of

Pl

A 1

A2 A3

lwhole

before fitting
arm segment

head

neck joint

y

z

x

joint
left shoulder

arm segment after
fitting

neck

left shoulder

left shoulder joint CS

fitting
rotation

Figure 10. Layer-1 fitting

the left hand. By assuming that initially the rotation of the
shoulder is the identity matrix � , the coordinates of the left
hand in shoulder space 
�� can be easily found. If in case
of no rotation the left shoulder segment is coincident in di-
rection with the x-axis of the shoulder coordinate system,
the current rotation of the shoulder ��� is identical to the
rotation matrix which rotates the shoulder coordinate sys-
tem’s x-axis onto the vector �
 � from the shoulder origin to
the current left hand coordinates. This matrix is straightfor-
ward to compute. The whole layer-1 fitting is performed in
real-time (Sect. 5).

4.3.2 Fitting the second skeleton layer

Once the model parameters are found for the first skele-
ton layer, the additional degrees of freedom of the second
model layer are recovered by using the visual hull informa-
tion. During the fitting step of model layer 1, the lengths
of arm and leg segments are recomputed for each time step.
Knowing the lengths of the additional two segments of arms
and legs enables computing the elbow and knee joint angles
( � in Fig. 9) directly using the cosine theorem. In order
to find the additional angle of the layer-1 arm and leg seg-
ments (see also 4.2), a maximal overlap between the set of
volume samples attached to the layer-2 model and the voxel
data obtained from the visual hull is searched. This step is
performed for those arm and leg segments with a noticeable
bending of the elbow and knee joints, i.e. only if the length
of the corresponding layer-1 segment is below a threshold.
The search procedure is as follows, using the arm segment
as an example:
Making use of the temporal coherence, we start with the
rotation of the arm in the previous frame, � � ����� 	 , and ro-
tate the arm segment to � equidistant angles � � in the inter-
val � � �
����� 	�� � ��� �
���!� 	 � ��" , with � defining the search
neighborhood size. For each such orientation, � � , a quality
measure for the overlap between the volume samples and
the visual hull, " �%�	��� � , is computed which is the higher
the better the model fits to the voxel set. For each volume
sample, the corresponding voxel it lies in is computed (see
Fig. 11) . If � is the number of these voxels which belong
to the visual hull (i.e. are filled), then �$# is the overlap
match score for the current configuration � � , where a value
of % !!& is used for best performance.
Using the set of � match scores, the final rotation � �
��	 of the
arm segment is found by computing the center of gravity of
the set ' !)( �&�+*," �%�	���
�.-�
 ! �-�0/1/0/��2�43 , the set of angles
�&� each multiplied by its corresponding match score

� � ��	 ! �576 )�*� ��� " �%�	��� �
6 )�*8 � ��� � � *9" �%�	��� � /

The procedure for the leg segments is the same. Although
the difference between match scores for neighboring � � can
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be very small, this approach still allows us to recover small
changes in rotation from � � � to � .

Figure 11. (l) Testing rotations between
search interval bounds (stippled lines), (r)
slice through voxel volume showing overlap
between samples and voxels

The positions of the cameras are crucial for the quality of
the visual hull. Typical artifacts due to bad camera positions
are occlusion artifacts observable as too thick arms or legs.
These artifacts form thin voxel planes in which the arm or
leg must lie. Our approach can still recover the correct arm
and leg configurations in the presence of these visual hull
errors. A camera looking at the scene from the top is not re-
quired, and even with our 4 cameras looking from the side,
robust fitting is possible.
For each video frame, the 2-step fitting procedure results in
a set of model parameters describing the body pose. These
rotation and translation parameters can be easily used to an-
imate any artificial character based on a similarly structured
skeleton (see also Sect. 4.2).

5 Results

The system is tested on several sequences of a person
moving in the camera capture setup shown in Fig. 2.
Currently, two Athon 1GHz single-processor PCs are
used. One PC runs a client and the server application
simultaneously, resulting in high workload on this machine.

Fig. 12 shows two frames out of a sequence of 170
frames. In both pictures, the spheres mark the tracked 3D
locations of the head, the hands and the feet. One can see
that the complete layer-2 skeleton is nicely fit into the visual
hulls. Using 4 cameras, the combined visual hull recon-
struction and feature tracking runs at 4 fps for a 64 * 64 * 64
volume and approximately 6.5 fps for a 32 * 32 * 32 vox-
els. Measurements show that currently feature tracking con-
sumes over 30% of total computation time. Furthermore,
we experience a network overhead in our current implemen-
tation, since the frame rates of one client running indepen-
dently without sending data to the server can reach up to 19
fps (measured using the internal camera trigger).

The model fitting process which works on recorded se-
quences takes 0.8s (for all four layer-2 arm and leg seg-
ments) for one visual hull using 256 volume samples and
15 angular search steps for arms and legs. Fitting the layer-
1 model can be done at almost no cost ( � 1 ms). It turns
out that even with only 4 cameras, the system can robustly
fit the kinematic skeleton to the motion data. Even visi-
bility artifacts resulting in too thick arms don’t mislead the
model fitting. The knowledge of correct head, hands and
feet positions also makes possible correct model fitting in
cases that are problematic for other approaches, such as
if the arms are very close to the body. A dynamic mo-
tion model for the tracked features will further extend the
range of allowed motions. More results including videos
of the system in action can be found at http://www.mpi-
sb.mpg.de/ � theobalt/VisualHullTracking.

Figure 12. Skeleton fitted to visual hulls (ren-
dered as point sets) of a moving person

6 Conclusion

In this paper we present a method that combines color-
based feature tracking and 3D scene reconstruction from sil-
houettes for human motion capture. The algorithm enables
fast fitting of a simplified kinematic model to the video
footage. Additional degrees of freedom that are hard to re-
cover using pure feature tracking are computed by using a
second layer of the kinematic model. This layer features
a special representation for arm and leg segments includ-
ing volume samples attached to the skeleton. The presented
method uses the reconstructed volumetric visual hull to find
the correct configuration of the kinematic skeleton at ev-
ery time step. First results of a prototype implementation
capturing the motion of a human performer demonstrate the
system’s ability to fit the skeleton in real-time and a more
detailed skeleton at near interactive frame rates. This hybrid
approach of combining feature tracking and volume recon-
struction is found to be capable of correctly finding human
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body configurations even in the presence of typical visibil-
ity artifacts in the visual hull.

In the future, the model fitting step and the visual hull
reconstruction will be integrated into one real-time applica-
tion. The use of a dynamic motion model for feature track-
ing is also another area of our research. Moreover, we look
into using the visual hull for the recovery of a wide range
of torso orientations to allow complex upper body motion.
Furthermore, the application of this new approach for char-
acter animation and the control of avatars using H-Anim
models will be investigated.
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