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Figure 1: The upper-left half of each image has been tone-mapped using three popular operators (see Table 1 for reference),

while the lower-right half of each image is the result of the same generic tone-mapping operator (TMO). The parameters of the

generic TMO may be adjusted to mimic a broad range of operators.

Abstract

Although several new tone-mapping operators are proposed each year, there is no reliable method to validate

their performance or to tell how different they are from one another. In order to analyze and understand the

behavior of tone-mapping operators, we model their mechanisms by fitting a generic operator to an HDR image

and its tone-mapped LDR rendering. We demonstrate that the majority of both global and local tone-mapping

operators can be well approximated by computationally inexpensive image processing operations, such as a per-

pixel tone curve, a modulation transfer function and color saturation adjustment. The results produced by such a

generic tone-mapping algorithm are often visually indistinguishable from much more expensive algorithms, such

as the bilateral filter. We show the usefulness of our generic tone-mapper in backward-compatible HDR image

compression, the black-box analysis of existing tone mapping algorithms and the synthesis of new algorithms that

are combination of existing operators.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Genera-

tion Display algorithms; I.4.2 [Image Processing and Computer Vision]: Enhancement Greyscale manipulation,

sharpening and deblurring

1. Introduction

In recent years the problem of tone-mapping has attracted

much attention and several dozens of tone mapping algo-

rithms have been proposed. However, it is still disputable

how to validate, analyze performance or quality, or simply

benchmark tone mapping algorithms. The most recent oper-

ators tend to exhibit increased complexity and more sophis-

ticated image processing algorithms, but it is not clear how

much quality can be gained by this additional cost. What

constitutes the improvement of the new tone mapping op-

erators (TMOs) over the state-of-the-art? And finally, how

different are tone mapping operators from each other?

In this paper we attempt to address some of these ques-

tions by modeling the processing that is performed inside a

TMO. In our black-box approach, a generic tone-mapping

algorithm is fit to a high-dynamic range (HDR) image and

its tone-mapped low-dynamic range (LDR) rendering. We

demonstrate that many tone-mapping operators, both global

and local, can be satisfactorily approximated by computa-

tionally inexpensive image processing operations, such as a
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per-pixel tone curve, modulation transfer function and color

saturation adjustment. As shown in Figure , the results pro-

duced by our a generic tone-mapping algorithm are often

visually indistinguishable from much more expensive algo-

rithms, such as the bilateral filter.

We introduce a generic tone-mapping operator, that can

closely approximate other operators in Section 3. Then,

we show the usefulness of such a generic tone-mapper in

the black-box analysis of existing tone mapping algorithms

(Section 4), in backward-compatible HDR image compres-

sion (Section 5), and the synthesis of new algorithms, which

are a combination of existing operators (Section 6).

2. Previous Work

This work is complementary to tone-mapping and inverse

tone-mapping [RTS∗07], in the sense that instead of com-

puting LDR image from HDR or HDR image from LDR,

we attempt to find an unknown tone-mapping operator. It

also offers methods to objectively and quantitatively com-

pare tone-mapping operators, a task that was usually the do-

main of subjective quality studies.

Typically, tone-mapping algorithms produce a display-

ready (low-dynamic range) image based on a linear radiance

map, often of high dynamic range (HDR). This challeng-

ing problem can be dated back to gray-scale photography or

even to the Renaissance painters, as pointed out in [McC07].

Therefore, it is no surprise that some tone-mapping opera-

tors (TMO) borrow ideas from photography, such as dodg-

ing and burning [RSSF02], unsharp masking [DD02], or are

inspired by arts where such techniques as counter-shading

[KMS07] had been known for centuries. There have been

also attempts to derive tone-mapping from subjective stud-

ies on human preference for contrast, brightness and color

saturation [YMMS06]. What is common for these and many

other TMOs, [WLRP97, DMAC03, MMS06, LFUS06], is

that they aim to maximize the subjective image quality in

terms of producing pleasing images. This goal is quite differ-

ent from the other major TMO objective, proposed in com-

puter graphics by Tumblin and Rushmeier [TR93], which

aims at rendering a displayable image that would be per-

ceived as close to the original scene as possible. This goal

of perceptual-match reproduction was pursued by others,

[FPSG96, PFFG98, PTYG00, KMS05], who employed the

models of the human visual system to maintain the original

scene appearance in tone-mapped images. These are only

some of the several dozens of TMOs that have been pro-

posed in the last 20 years. The most complete review of re-

cent TMOs, although lacking those proposed after 2005, can

be found in [RWPD05, chapters 6–8].

The large number of proposed TMOs motivated studies

on their analysis, comparison and validation. Several subjec-

tive studies attempt to rank TMOs and analyze their effect

on perceived image contrast, brightness, detail and artifact

Figure 2: Data-flow for the generic TMO model.

visibility, and overall quality and naturalness [DMMS02,

KYJF04, LCTS05, CWNA06]. Such studies, due to tedious

experimental procedures, focus on the results produced with

default parameters, while ignoring the vast diversity of re-

sults that the same operators can produce when their param-

eters are varied. They also rarely make distinction between

the TMOs that maximized the subjective image quality and

aimed at the perceptual-match reproduction. Since natural-

looking images are not always preferred images, it is quite

expectable that a perceptual-match TMO will be ranked

lower than a subjective-quality oriented TMO, while both

tone-mappers can be equally suitable for their distinct appli-

cations. A larger number of factors and images could be con-

sidered given an objective metric. Smith et al. proposed an

objective metric for measuring perceived global contrast and

detail visibility change in tone mapped images [SKMS06]

and compared several popular operators. In contrast to Smith

et al.’s approach, we do not attempt to model perceived at-

tributes, which are difficult to justify and assess even with

extensive studies, but rather offer methods to quantitatively

compare TMO characteristics and analyze their variability

with different parameter settings and different image con-

tent.

3. Modeling generic TMO

Given a pair of images comprised of an HDR image and

its tone-mapped LDR counterpart, we want to find a tone-

mapping operator that is based on a simple model and is

controlled with as few parameters as possible. Such a model,

however, must be general enough to approximate a broad

range of tone-mapping operators.

A typical approach to modeling complex systems, such as

tone-mapping operators, usually involves graphical visual-

ization of the system behavior, expert knowledge of the un-

derlying processes and finally, a trial-and-error selection of

the best model from possible candidates. Following this pro-

cedure we developed several models, from which we chose

the one that gives the best fit and is stable. Our best perform-

ing model consists of three components: tone curve, mod-

ulation transfer function and color saturation correction, as

illustrated in Figure 2. The result for a single color compo-

nent (red, green or blue) is given by:

CTMO =MTF(TC(LHDR)) ·R
s

(1)

where MTF() is the modulation transfer function, TC() is
a tone curve applied to each pixel separately, LHDR is the

luminance of the input HDR pixels, s is color saturation pa-
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rameter and R is a color ratio, given by:

R=
CHDR

LHDR
(2)

where CHDR is a color component of the input HDR image.

The above model lets us use a single tone curve for all color

channels, and makes any necessary color adjustments using

only the single parameter s. This approach is typically em-

ployed in tone-mapping [Sch94,TT99].

3.1. Tone curve

To find the most suitable model of a tone curve, we per-

form Principal Component Analysis (PCA) on a set of tone

curves. These curves are the result of tone mapping 5 images

using 12 different tone mapping operators. The first five sig-

nificant principal components are shown in Figure 3. The

first principal component clearly indicates that the S-shaped

curve is prevalent in tone mapping, while the remaining prin-

cipal components mostly modulate luminance compression

in different parts of the tone-scale. There are also several

practical reasons for an S-shaped tone curve: it distorts the

contrast in the middle-gray range the least, which usually

contains the most important part of the scene; typical images

contain more pixels in the middle-gray range than in high-

lights and shadows; analog film has an S-shaped response;

and photoreceptors are also found to have an S-shaped re-

sponse. Low eigenvalues above the fifth principal compo-

nents suggest that about 5 parameters should suffice to de-

scribe a tone curve.

We do not use actual principal components in our generic

tone operator, as these are too abstract and difficult to ana-

lyze. Instead, we use a four-segment sigmoidal function:

TC(LHDR) =































0 if L′ ≤ b−dl

1
2 c

L′−b

1−al(L′−b)
+ 12 if b−dl < L

′ ≤ b

1
2 c

L′−b

1+ah(L′−b)
+ 12 if b< L′ ≤ b+dh

1 if L′ > b+dh
(3)

where L′ is the logarithm of luminance (L′ = log10(LHDR)),
b is the image brightness adjustment parameter, c is the con-

trast parameter, and al , ah decide on the contrast compres-

sion for shadows and highlights. Note that the brightness pa-

rameter is not an estimate of the perceived image brightness

but a relative adjustment factor. For more intuitive control,

the al , ar parameters can be replaced by:

al =
c·dl−1
dl

ah = c·dh−1
dh

(4)

where dl is the lower midtone range and dh is the higher

midtone range. The curve is C1-continuous everywhere ex-

cept b− dl and b+ dh. To analyze actual contrast change, it
is more convenient to express the contrast parameter c as the

slope of an effective tone curve (displayed luminance instead

Figure 4: Tone curve used in the generic TMO and its pa-

rameters.

of pixel values) on a log-log plot:

c
′ = γ c/log(10) (5)

where γ is the display gamma, usually equal to 2.2. An in-

tuitive illustration of the tone curve parameters is shown in

Figure 4.

The tone function given in Equation 3 is one of multiple

choices for tone curve parametrization. We choose it mostly

because it offers intuitive parameters and can approximate

both S-shaped sigmoidal tone curves used in tone-mapping

and J-shaped gamma curves found in displays and cameras.

The low number of parameters may result in imperfect fits

for some global TMOs. We found, however, that such imper-

fect fits rarely result in visibly different results.

3.2. Spatial Modulation
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Figure 5: Modulation transfer function (solid green) as a

linear combination of five band-pass filters (dashed lines).

m1–m5 are the modulations of each filter.

The tone curve and color saturation correction is suffi-

cient to model most of the global tone mapping operators.

To model spatially-varying (local) TMOs, we need to intro-

duce an additional spatial operator. We choose the modula-

tion transfer function (MTF), which is commonly used to

model optical systems. The MTF is usually depicted as a 1D

function of spatial frequency, such as the one shown in Fig-

ure 5 (solid green line). It specifies which spatial frequencies

to amplify or compress and can be thought of as a selection

of low- and high-pass filters that can sharpen or blur an im-

age as needed.
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Figure 3: Principal component for the set of typical tone curves. The first principal components resembles the S-shaped curve,

commonly used in tone operators.

# Label Name Reference

1. LogMap Adaptive Logarithmic Mapping For Displaying High Contrast Scenes [DMAC03]

2. Photo Photographic Tone Reproduction for Digital Images [RSSF02]

3. VisAdapt A Model of Visual Adaptation for Realistic Image Synthesis [FPSG96]

4. GradDom Gradient Domain High Dynamic Range Compression [FLW02]

5. BriAda Tone Reproduction for Realistic Images [TR93]

6. HistEq A Visibility Matching Tone Reproduction Operator for High Dynamic Range Scenes [WLRP97]

7. Retinex Retinex adapted to tone-mapping [DMMS02, p.8]

8. ContMap A perceptual framework for contrast processing of high dynamic range images [MMS06, sec.4]

9. Bilat Fast Bilateral Filtering for the Display of High-Dynamic-Range Images [DD02]

10. Ashik A Tone Mapping Algorithm for High Contrast Images [Ash02]

11. RQuant Quantization Techniques for the Visualization of High Dynamic Range Pictures [Sch94]

12. ContEq as in 8. [MMS06, sec.5]

13. PSLA Photoshop TMO: Local adaptation n/a

14. PSHC Photoshop TMO: Highlight compression n/a

15. TimeAdapt Time-dependent Visual Adaptation For Fast Realistic Image Display [PTYG00]

Table 1: Tone mapping operators used in this study and their labels.

To reduce the number of model parameters, we do not use

a continuous MTF, but a linear combination of five param-

eters and five basis functions. We choose the filters used in

the Cortex transform [Wat87] with the modifications from

[Dal93] as the basis functions. The filters become wider for

higher frequencies, which is consistent with both the find-

ings on spatial selective pathways in the human visual sys-

tem and with the distribution of energy in natural scenes

(higher frequencies contain lower energy, which is compen-

sated by wider filters). We use only five band-pass filters and

do not modulate the base band, since the base band is ad-

justed by the tone curve. The band-pass filters used in our

generic tone-mapping model are visualized as dashed lines

in Figure 5 and as dotted lines on each plot in the right

panes of Figure 6. The choice of particular basis functions

is not essential in our application, thus the Cortex transform

could be also replaced with differences of Gaussians (DoG)

or wavelets.

Although the MTF cannot fully substitute all local image

operations used in local TMOs, it gives a surprisingly good

approximation of them, as we show in Figure and discuss in

Section 4.

3.3. Fitting procedure

To find the parameters of the generic TMO efficiently, we

split the fitting procedure into two parts: first we fit the tone

curve and find the saturation correction parameter s using the

Levenberg-Marquardt method:

argmax
b,c,dl ,dh,s

∑
k=1,2,3

∣

∣CLDR−TC(CHDR;b,c,dl ,dh) ·R
s
∣

∣

2
(6)

where CLDR is the input LDR image and k is the index of a

color channel (red, green and blue). For simplicity we skip

the summation over pixels. Then, we find the five parameters

of the MTF by solving a linear least-squares problem:

argmax
m1,..,m5

∣

∣HP
[

mean
(

CLDR/R
s)]

−MTF(LHDR;m1, ..,m5)
∣

∣

2

(7)

where m1, ..,m5 are MTF coefficients and the mean function
averages values across color channels. HP[] is the high-pass
filter that removes the base-band, which is also not included

in the MTF function (because the base band is modified by

the tone curve). We exclude the pixels from the summation

that are clipped in the tone-mapped image CLDR.

We compared our results with the complete solution,

where we minimized for all parameters at once, and did not

notice any significant improvement. The two part procedure
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can find the best fit in less than 15 seconds for a half-mega-

pixel image. This timing can be further improved when only

a subset of pixels is used for fitting the tone curve.

4. Analysis of tone-mapping operators

We fit our generic tone-mapping operator to the results of

12 popular TMOs and several images. Wherever possible,

we use the images generated by the authors of the operators

that are available on Internet [tmo], thus avoiding problems

with unfaithful implementations and reducing bias from pa-

rameter selection. For unavailable tone-mapped images, we

run the tone-mapping algorithms using the default param-

eters and the pfstmo software [pfs] or the tone-mappers

bundled with the book [RWPD05]. Table 1 lists all TMOs

that have been used in this study, together with the labels

used as references.

Based on the parameters of the generic TMO, we can vi-

sualize the characteristics of a dozen TMOs in a unified man-

ner in Figure 6. The visualization for each image pair con-

sists of three parts: an original tone-mapped image and the

result of the best fit; tone curve and scatter plot of pixel lu-

minance values; and the modulation transfer function. We

also indicate how close the fit is to the tone-mapped im-

age in terms of the peak-signal-to-noise ratio (PSNR) and

the structural similarity index (SSIM) [WBSS04]. A more

extensive set of results together with full-resolution im-

ages can be found at http:http://www.mpi-inf.mpg.de/

resources/hdr/generic_tmo/.

Figure 7: Example of a TMO result that does not give a good

fit to the generic TMO. The original result of GradDom (left)

is visibly sharper and has boosted shadows and highlights.

For most tone-mapping operators and images, the fit of

the generic TMO is surprisingly good, with the SSIM in-

dex [WBSS04] close to one (SSIM=1 denotes highest qual-

ity), and results that cannot be distinguished from the orig-

inal TMO. Some examples of nearly perfect fits are shown

in Figure . The fit is, however, worse for the TMOs that em-

ploy strongly non-linear image processing, such as gradient

compression in the case of the GradDom and ContEq oper-

ators (refer to Table 1). An example of a poor fit is shown

in Figure 7. Even though a plain MTF cannot produce as

strong a local contrast boost as these highly non-linear op-

erators, the resulting approximations are still useful in such

applications as backward-compatible HDR video compres-

sion, discussed in Section 5. Another limitation of the model

are the operators that employ user-assisted or automatic seg-

mentation and apply radically different TMOs to each region

of an image, such as [KMS05,LFUS06]. We excluded such

operators from our study.

Figure 6 offers many insights into tone-mapping opera-

tors, regardless of their complexity and without any need

to analyze the underlying image processing operations. Lo-

cal and global TMOs can easily be distinguished since local

operators have a scattered LDR/HDR luminance plot (the

middle panels in Figure 6) and amplified medium and high

frequencies on the MTF plot (the right panel). The stronger

the sharpening effect, the higher the boost of the medium

and high frequencies. Most of the tone-mapping operators

compress the low frequency (base band) contrast, with the

compression ratio from c′ = 0.30, resulting in relatively flat-
looking images, up to the ratio c′ = 0.88, resulting in high-
contrast images but also clipping of brightest and darkest

pixels. The exception is the HistEq operator (c′ = 1.28),
which is based on histogram equalization, which causes

contrast amplification in the well-represented medium gray-

levels. The majority of the TMOs have a tendency to allocate

a higher dynamic range for the lower midtones (dl > dh), re-
sulting in lower contrast for shades than for bright regions

(refer also to Figure 4). If this proportion is reversed, for

example as in the Ashik operator, the shades are brightened

with a characteristic flash-like fill-in effect. The color satu-

ration compensation is similar for most TMOs (s≈ 0.45).

We can use our fitting procedure to investigate

the TMOs on which no information is available. To

demonstrate this, we tone-map several images using

Adobe R© Photoshop’s R© CS2 local adaptation and high-

light compressionmethods. The fit results shown in Figure 8

indicate that the highlight compression method is a typical

global TMO based on a sigmoidal tone curve. The local

adaptation method is a local TMO with a moderate sharp-

ening effect, as shown on the MTF plot.

Tone-mapping operators offer two more dimensions to ex-

plore: image content and tone-mapping parameters. To ana-

lyze them, we compute fits for the Bilat TMO. We chose the

Bilat because it is a local TMO with interesting character-

istic and is well approximated with the generic TMO. The

results of fitting the Bilat TMO to 80 images at four differ-

ent settings of the base-layer contrast compression param-

eter are shown in Figure 9. The most pronounced effect of

image content is the horizontal shift of the tone curve (the

image brightness parameter), but also the noticeable change

of contrast. The value of the base-layer contrast compres-
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Figure 6: Results of fitting several tone-mapped images to the generic operator. For each TMO: left – the original tone-mapped

image (left-top) and its fit with the generic TMO (right-bottom); middle – fitted tone curve (red) and the scatter plot showing

the relation between LDR/HDR luminance values; right – MTF of the fitted generic TMO. The blue vertical line indicates the

Nyquist frequency, the black horizontal – the value 1 (no change), and the dotted curves – the base functions of the MTF.
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Figure 8: Results of the fitting procedure for Adobe Photoshop’s CS2 tone mapping algorithms.

sion parameter elevates MTF coefficients. Since the overall

MTF coefficients also change from image to image, we can

infer that the Bilat TMO sharpens an image adaptively de-

pending on its content. The effect of the base-layer contrast

compression parameter can be better observed in Figure 10.

The parameter twists the tone curve by affecting the con-

trast parameter c and elevates the MTF. The magnitude of

the MTF elevation depends on image content.

The presented examples of the analysis may seem triv-

ial for well-known tone-mapping operators, but they may be

very useful for complex TMOs that cannot be easily under-

stood by analyzing their formulas or the resulting images.

Such analysis may also be applied to unknown optical and

digital systems, such as digital cameras, where faithful mod-

eling of the entire system is not always practical.
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Figure 9: Results of fitting Bilat at 4 TMO parameter set-

tings (columns) to 80 images. Top: tone curves; bottom:

MTFs. Red-continuous lines: averaged over images; Blue-

dotted lines – separate results for each image.
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HDR-VDP - percentage of visibly different pixels at P>0.75 Structural Similarity Index (SSIM)

Figure 11: Distortion measures for the HDR images reconstructed from their tone-mapped counterparts. Color bars denote

JPEG compression quality: 50%, 75% or 90%, where 100% is the best quality. For the HDR-VDP lower values denote better

quality. For the SSIM higher values denote higher quality.

0

0.5

1

P
ix

e
l 
v
a

lu
e

log Luminance factor

atrium_morning

log Luminance factor

atrium_night

log Luminance factor

belgium

log Luminance factor

cathedral

0 0.2 0.4 0.6
0

1

2

Frequency [cyc/pix]

M
o

d
u

la
ti
o

n

0 0.2 0.4 0.6
Frequency [cyc/pix]

0 0.2 0.4 0.6
Frequency [cyc/pix]

0 0.2 0.4 0.6
Frequency [cyc/pix]

Figure 10: Results of fitting Bilat at 5 TMO parameter set-

tings to 4 images (columns). The notation is the same as in

Figure 9.

5. HDR Image Compression

One potential application of the generic TMO is backward-

compatible compression of HDR images. A tone-mapped

image is encoded using an ordinary JPEG compression, but

also supplied with the 10 parameters of the generic TMO.

Since the generic TMO is fully reversible, we can use these

parameters to reverse tone-map and reconstruct the origi-

nal HDR image. Such encoding results in very small over-

head (only ten coefficients for reconstructing the HDR im-

age) and can adapt to almost any TMO. This is however also

a lossy compression method with three sources of possible

distortions: lossy compression of the tone-mapped image,

inaccurate fitting of the generic TMO, and quantization and

clipping errors due to tone mapping. Most of these distor-

tions can be reduced if we additionally encode a small resid-

ual image containing the differences between the original

and the reconstructed HDR image, as proposed in [WS04]

and [MEMS06].

Assuming that no residual image is used, we investigate

which tone-mapping algorithms are the most suitable for this

kind of HDR image compression. We reconstruct HDR im-

ages from their tone-mapped versions after they have been

distorted by JPEG at three compression quality levels. This

reconstruction is conducted for 14 tone-mapping operators,

and the results are averaged over a set of 5 images. The re-

sults in Figure 11 indicate that the global TMOs result in the

least distorted reconstruction, which, however, quickly dete-

riorates if the JPEG compression quality is low. Such sen-

sitivity to JPEG compression can be explained by the con-

trast stretching performed when reversing the TMO, which

amplifies JPEG compression artifacts. The best performance

can be observed for those global TMOs that do not clip

many pixels (LogMap, Photo), and much worse for those

TMOs that distort the pixels in highlights and shades (His-

tEq). The local TMOs that involve sharpening produce the

worst reconstruction. This may be due to a bad fit of the

generic TMO, or to the sharpening, which amplifies high

spatial frequencies, which are heavily distorted by the JPEG

quantization matrix. High frequency boosting also causes

worse JPEG compression performance, as shown in Fig-

ure 12. Therefore, the TMOs that sharpen an image should

be avoided in backward-compatible HDR image compres-

sion.

A similar approach to compressing HDR images and

video has been previously proposed by Ward and Simmons

[WS04], Li et al. [LSA05] and Mantiuk et al. [MEMS06].

The difference is that both [WS04] and [LSA05] improve

compression by distorting a tone-mapped image, which is

not desirable in many applications. We extend and general-

ize the approach of Mantiuk et al. by adding spatial modu-

lation to compensate for local TMOs and reduce the number

of parameters that describe the tone curve. Our study also

states which operators are the most suitable for backward-

compatible HDR compression, and explains why.
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Figure 12: Compression performance for a range of tone-

mapping operators. The 75% quality results have been omit-

ted for better clarity.

6. Synthesis of tone-mapping operators

Each tone-mapping operator has been carefully designed to

reach a certain aesthetic or application-specific goal, but be-

cause of a large number of the available operators, it is often

difficult to choose the best one to apply. This section shows

that we need not to decide on a single TMO, and can use

several operators to tone-map a single image.

Since the generic TMO contains 10 parameters that are

difficult to control, we replace them with a smaller number

of new parameters that alter specific TMO characteristics. In

particular, we want to mimic the behavior of selected TMOs

by maximizing the chance that a set of new parameters gives

a result that is close to one of these TMOs. As in [BV99],

we assume that each original parameter is a linear combina-

tion of new parameters and employ PCA to find these com-

binations. Formally, we want to find a matrix A that lets us

compute the original generic TMO parameters, P, based on

the new parameters, N:

P= A ·N (8)

where the vector N possibly has fewer elements than the 10-

element vector P = [b c dl dh s m1 ... m5]
T. For the principal

component analysis we create a database of generic TMO

parameters (P), based on 40 HDR images tone-mapped with

6 TMOs (HistEq, Bilat, Ashik, Photo, LogMap, TimeAdapt).

The TMOs were selected to result in a good fit to the generic

TMO.

As shown in Figure 9, the parameters of the generic TMO

are determined not only by a particular TMO and its param-

eters, but also by image content. Since we want to be able

to tone-map any image, we need to remove the effect of im-

age content. To do this, we check if a linear combination of

selected percentiles of luminance values has a significant ef-

fect on any of the TMO parameters. We choose percentiles,

as they are the simplest description of image content, to-

gether with an image histogram, from which the percentiles

can be derived. The ANOVA test indicates that only the im-

age brightness parameter (b) is affected by the percentiles

(F = 5.68, α < 0.01) and therefore we fit a linear model for
image brightness only. The image dependent component of

brightness is predicted by:

bid = [P1 P25 P50 P75 P99 1]·
[−0.23 0.6 0.84 −0.03 0.15 −0.32]

(9)

where Pn is the n-th percentile of logarithmic image lumi-

nance and “·” is the dot product. The value of bid is sub-

tracted from the brightness parameters of the vector P before

it is passed to the PCA. When tone-mapping an image, bid is

added to the brightness parameter. Image content obviously

also affects other TMO parameters, but a these effects cannot

be predicted by a simple linear combination of percentiles.

To perform the PCA, all variables should be given in the

same units, which is not the case for the parameters of the

generic TMO. We normalize the generic TMO parameters

before PCA by subtracting the mean value and dividing by

the standard deviation. For the parameters that share the

same units ({b, dl , dh} and the MTF coefficients) we com-

pute the standard deviation for the entire group.
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Figure 13: First two principal components for our database

of generic TMO parameters.

The two first principal components for our database of

TMOs and images (A:,1, A:,2) are illustrated in Figure 13.

The Figure also shows the mean parameter values for each

TMO. The plot indicates that the first principal component

is responsible for sharpness (MTF parameters m1–m5) and

color saturation (s), while the second component stands for

the compression of highlights (dh) and contrast (c). Bright-

ness (b) and contrast (c) are inversely correlated (higher

brightness is compensated by lower contrast), a correlation

also found in the study by [YMMS06].

We can use the first two principal components (PC) to ex-

plore the space of possible TMOs. Figure 14 shows a col-

lection of tone-mapped images, for which parameters were

selected based on the first two PC. These images were not
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used for computing the statistical model. The top-center im-

age is a mixture ofHistEq and TimeAdapt (refer to Figure 13

for the PC coordinates of TMOs), while the middle-right im-

age is closer to Bilat. Similarly we can combine the result of

any pre-learned TMO for an arbitrary image.

Figure 14: Images tone-mapped using a linear combination

of selected operators. The image in the center is the mean

result of all TMOs, and the axis are the same as in Figure 13.

The axis labels indicate positive or negative correlation with

the genetic TMO parameters.

This section shows how a new statistical TMO can learn

solely based on the results of other operators. This technique

can be used to build computationally less expensive opera-

tors that mimic the behavior of more complex ones, to study

the parameter space of existing TMOs, or to combine fea-

tures of several TMOs into a single operator.

7. Discussion

An interesting observation in this study is that non-linear

operators, such as the bilateral filter, can be approximated

by linear filters. It does not mean that linear filters can pro-

duce exactly same results as those computationally expen-

sive non-linear operators, but rather that with a quality fac-

tor SSIM≥0.95, only expert observers can notice and appre-
ciate the difference between the linear approximation and

the result of the non-linear operator. This suggests that for

many practical applications, well-designed linear filters may

be used instead of expensive non-linear operators.

The major difficulty of our approach is that TMO process-

ing is influenced by image content and therefore the generic

TMO parameters will vary from image to image. Since a

simple brightness estimator bid does not account for all im-

age effects, our TMO synthesis approach cannot accurately

replicate original TMO results unless more advanced mod-

els predicting the generic TMO parameters are employed.

This limitation, however, does not affect other applications

of the generic TMO, such as backward-compatible HDR im-

age compression or quantitative TMO analysis, where both

the tone-mapped and HDR images are known.

We tried to improve the accuracy of the approximation

by introducing additional non-linearity after the MTF step.

The non-linearity was a power function applied to each band

with a separate exponent. Although we achieved about 5%

improvement in the SSIM and HDR-VDP scores, the fitting

was considerably slower and in many cases unstable due to

local minima. Such tone-mapping was also non-invertible

and therefore not suitable for the backward-compatible HDR

compression. We expect that better approximation would

require an even more complex tone mapping operator that

could account for local changes in the mapping function.

However, designing an invertible operator that guarantees

stable fitting is not a trivial task.

8. Conclusions

This paper demonstrates that many TMOs can be approxi-

mated by a single model consisting of a tone curve followed

by a spatial modulation function. This indicates that these

TMOs employ very similar image processing, and the ma-

jor difference comes from the strategy used for choosing the

set of parameters that gives desirable results. The method

outlined in this paper is useful for the analysis and quantita-

tive comparison of tone-mapping operators. The proposed

generic model can be used in backward-compatible HDR

image encoding to reverse tone-mapping operators and thus

to recover HDR content. We also demonstrate how the be-

havior of existing operators can be learned from examples

and reproduced on other images.

In future work we would like to improve the statistical

model described in Section 6 to make it as independent of

image content as possible. Faster implementation of the opti-

mization procedure and the generic operator based on Gaus-

sian pyramids would open possibilities for new applications,

such as HDR video compression and video tone-mapping.
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