
MPI Informatik 1 Kurt Mehlhorn

Some of the Theory behind LEDA

Kurt Mehlhorn

MPI Informatik, Saarbrücken

Stefan Näher

Universität Trier

Christian Uhrig

Algorithmic Solutions GmbH, Saarbrücken

Christoph Burnikel, Michael Seel, Stefan Schirra, Oliver Zlotowski, Mathias Bäsken, Joachim

Ziegler, Guido Schäfer, Sven Thiel, Ernst Althaus, David Alberts, Ulrike Bartuschka, Ulrich

Finkler, Stefan Funke, Evelyn Haak, Andreas Luleich, Jochen Könemann, Mathias Metzler,

Michael Müller, Michael Muth, Markus Neukirch, Markus Paul, Christian Schwarz, Michael

Wenzel, Thomas Ziegler, and many others

MPI Informatik 2 Kurt Mehlhorn

I ran a number of LEDA demos during my talk. You will get more out of the slides, if

you run the demos on the side. I will insert slides with screen dumps at the appropriate

places. As a screen saver I showed the demo

demo/geowin/geowin_voro

I pointed out later in the talk that the picture is so beautiful because the input is highly

degenerate.

MPI Informatik 3 Kurt Mehlhorn

Outline of Talk
� Introduction

– what is LEDA?

– who uses LEDA and what for?

� The Theoretical Basis of LEDA

– Algorithms

– Correctness

– Efficiency

– System Architecture

� Summary

MPI Informatik 4 Kurt Mehlhorn

What is LEDA?
� LEDA = Library of Efficient Data Types and Algorithms

– covers a large part of combinatorial and geometric computing

(AHU, CLR, Mehlh, PS, BKOS)

– easy to use

– extendible

– correct

– efficient

� provides algorithmic intelligence for applications in

GIS, VLSI-design, scheduling, traffic planning, graphics, facility planning,

computational biology, � � �

� a platform on which to build applications

� a tool for teaching algorithms and algorithm engineering

� extended by AGD, LEDA-SM, CGAL

MPI Informatik 5 Kurt Mehlhorn

Modules in LEDA
� Basic Data Types: random source, stack, queue, map, list, set, dictionary, priority

queue, � � �

� Advanced Data Types: partition, sorted sequence, pq-trees, dynamic trees, range

trees, interval trees, segment trees, � � �

� Numbers: integer, rational, bigfloat, real, linear algebra

� Graphs and Graph Algorithms: graphs, node and edge arrays, iterators, shortest

paths, maximum flow, min cost flow, matching (weighted, unweighted, bipartite,

general), assignment, components and connectivity, planarity, layout, � � �

� Geometry: points, lines, circles, inexact and exact geometry kernels, convex hulls,

Delaunay diagrams, Voronoi diagrams, sweep-line method, polygons and boolean

operations, � � �

� Visualization and I/O: graphic windows, graph editor, persistence

MPI Informatik 6 Kurt Mehlhorn

LEDA Users
� academic users

– 1500 installations in more than 50 countries

– � 50% of our users are in CS

– � 20% of our users are in algorithms

� commercial users

MCI, Siemens AG, Ford, Lufthansa Systems, E-Plus Mobilfunk, Silicon Graphics, Sony

Corporation, Deutsche System Technik, France Telecom, Digital Equipment, Chevron

Petroleum, Sun Microsystems, Commerz Financial Products, Daimler Benz, IBM, Mentor

Graphics, Canon Research Center, General Motors, CSIRO, Leica, Hewlett Packard, VTT

Information, InterHDL, Bosch Telecom, Deutsche Telekom, Minolta, NEC, ESA, Isys

Software, Daimler Benz Aerospace, Electro Optical Systems, TerraGlyph, Bioreason,

Mitsubishi, ST Microelectronics, Eurodecision, Real-Time Innovations, Source One Network,

Viewscape3D, Lion Bioscience AG, Bioinformatics, Celera, HIS, SmithKline Beecham,

Biomax, Shared Earth, General Motors, MIP, Credit Suisse, Infineon, Motorola Russia,

Rational, � � �

and about 300 others

MPI Informatik 7 Kurt Mehlhorn

Sample Applications

Application Algorithmic Intelligence

traffic planning

(Daimler-Chrysler)

graph algorithms, max flow, shor-

test path

geographic information systems

(MUS)

intersection of polygons, point lo-

cation, overlay of planar maps

data mining

(Silicon Graphics)
data structures, graph algorithms

VLSI-design

(Ford)

graph algorithms, Steiner trees,

scan-line algorithms

Human Genom Sequencing

(Celera Genomics)
graph algorithms, data structures,

visualization

MPI Informatik 8 Kurt Mehlhorn

The Theoretical Basis of LEDA

1. Algorithms

2. System Architecture

3. Correctness of Geometrical and Network Algorithms

4. Correctness of Implementations

5. Efficiency

I am not claiming that we were the first in any of the topics above,
I do claim, however, that we made significant progress in items 2, 3, 4, and 5.

MPI Informatik 9 Kurt Mehlhorn

The Theoretical Basis of LEDA

1. Algorithms

� when we started, we believed, that algorithm theory would suffice as a basis and

� that it would require sweat, but no theoretical insights, to build the system.

� we quickly learned differently

� we had to learn about specification methods, programming paradigms,

programming patterns, system architecture, numerical analysis, algebra, � � � , and

� we had to develop new algorithms to get a correct and efficient system

2. System Architecture

3. Correctness of Geometrical and Network Algorithms

4. Correctness of Implementations

5. Efficiency

MPI Informatik 10 Kurt Mehlhorn

The Theoretical Basis of LEDA

1. Algorithms

2. System Architecture

� a loose collection of programs does not make an easy-to-use, coherent, and

extendible system

� coherent design with a small number of basic concepts

� abstract data types including abstract treatment of pointers

� I will not go into this aspect of the work � � try the system out

3. Correctness of Geometrical and Network Algorithms

4. Correctness of Implementations

5. Efficiency

MPI Informatik 11 Kurt Mehlhorn

The Theoretical Basis of LEDA

1. Algorithms

2. System Architecture

3. Correctness of Geometrical and Network Algorithms

� algs are designed for a Real RAM, but machines provide ints and doubles.

� geometric algs are designed for non-degenerate inputs

� design and implementation of efficient exact number types and geometry kernels

(illusion of a Real RAM)

� reformulation of geometric algs for general inputs

� analysis of arithmetic demand

4. Correctness of Implementations

5. Efficiency

MPI Informatik 12 Kurt Mehlhorn

The Theoretical Basis of LEDA

1. Algorithms

2. System Architecture

3. Correctness of Geometrical and Network Algorithms

4. Correctness of Implementations

� implementors make mistakes and we are no exception to this rule

� program checking

5. Efficiency

MPI Informatik 13 Kurt Mehlhorn

The Theoretical Basis of LEDA

1. Algorithms

2. System Architecture

3. Correctness of Geometrical and Network Algorithms

4. Correctness of Implementations

5. Efficiency

� library use incurs significant overhead

� algs are designed to prove big-Oh statements, but for programs constant factors

matter

� low (near-zero) overhead library design

– careful design of basic data structures

– programming techniques that ease the task of optimizing compilers

� libraries open opportunities: complex algs

� design choices, heuristics, and analysis

MPI Informatik 14 Kurt Mehlhorn

Floating Point Arithmetic Destroys Geometry
� given two lines � 1 : a1x � b1y � c1 and � 2 : a2x � b2y � c2

� compute their intersection point p � � xp 	 yp
 .

xp � c1b2 � c2b1

a1b2� a2b1
yp � a1c2 � a2c1

a1b2� a2b1

� check whether p lies on � 1, i.e. check whether

a1xp � b1yp � � c1

� with floating point arithmetic, ai 	 bi 	 ci� 0 � � 10000 � uniformly at random, the check

is going to fail in about one-third of the cases.

MPI Informatik 15 Kurt Mehlhorn

Floating Point Arithmetic Destroys Geometry
� given two lines � 1 : a1x � b1y � c1 and � 2 : a2x � b2y � c2

� compute their intersection point p � � xp 	 yp
 .

xp � c1b2 � c2b1

a1b2� a2b1
yp � a1c2 � a2c1

a1b2� a2b1

� check whether p lies on � 1, i.e. check whether

a1xp � b1yp � � c1

� with floating point arithmetic, ai 	 bi 	 ci� 0 � � 10000 � uniformly at random, the check

is going to fail in about one-third of the cases.

� in the first release of LEDA none of the geometric algorithms worked as claimed.

� today, all of them do due to exact number types and geometry kernels.

MPI Informatik 16 Kurt Mehlhorn

Academic Problem??? Boolean Operations on Polygons
� construct a regular n-gon P, (or cylinder)

� obtain Q from P by a rotation by α degrees about its center,

� compute the union of P and Q (= a 4n gon).

System n α time output

ACIS 1000 1.0e-4 5 min correct

ACIS 1000 1.0e-5 4.5 min correct

ACIS 1000 1.0e-6 30 sec problem too difficult

Microstation95 100 1.0e-2 2 sec correct

Microstation95 100 0.5e-2 3 sec incorrect answer

Rhino3D 200 1.0e-2 15sec correct

Rhino3D 400 1.0e-2 – CRASH

CGAL/LEDA 5000 6.175e-06 30 sec correct

CGAL/LEDA 5000 1.581e-09 34 sec correct

CGAL/LEDA 20000 9.88e-07 141 sec correct

MPI Informatik 17 Kurt Mehlhorn

The Voronoi Diagram of Line Segments

Voronoi diagram = points with

at least two nearest neighbors

VD consists of parts of

� perpendicular bisectors of

points, and

� angular bisectors of lines,

and

� parabolas

MPI Informatik 18 Kurt Mehlhorn

Some Remarks
� about 10 years ago, I asked a student to implement an algorithm for Voronoi

diagrams of line segments

– he was a good student, has a PhD by now

� we found several algs in the literature

– divide and conquer

– sweep

– randomized incremental

� all algs use a certain geometric primitive: the incircle test

MPI Informatik 19 Kurt Mehlhorn

A Typical Test: The Incircle Test

l1

l2

p

v

� v is defined by l1, l2, and p, i.e., dist � v 	 p
 � dist � v 	 l1
 � dist � v 	 l2

MPI Informatik 20 Kurt Mehlhorn

A Typical Test: The Incircle Test

l1

l2

p

v

� v is defined by l1, l2, and p, i.e., dist � v 	 p
 � dist � v 	 l1
 � dist � v 	 l2

MPI Informatik 21 Kurt Mehlhorn

A Typical Test: The Incircle Test

l1

l2

p

v

l3

� v is defined by l1, l2, and p, i.e., dist � v 	 p
 � dist � v 	 l1
 � dist � v 	 l2

� Add l3. Is v still a Voronoi vertex?

� If dist � v 	 p
�� dist � v 	 l3
 , YES

MPI Informatik 22 Kurt Mehlhorn

A Typical Test: The Incircle Test

l1

l2

p

v

l3

� v is defined by l1, l2, and p, i.e., dist � v 	 p
 � dist � v 	 l1
 � dist � v 	 l2

� Add l3. Is v still a Voronoi vertex?

� If dist � v 	 p
�� dist � v 	 l3
 , NO

MPI Informatik 23 Kurt Mehlhorn

A Typical Test: The Incircle Test

l1

l2

p

v

l3

� v is defined by l1, l2, and p, i.e., dist � v 	 p
 � dist � v 	 l1
 � dist � v 	 l2

� Add l3. Is v still a Voronoi vertex?

� If dist � v 	 p
 � dist � v 	 l3
 , YES, BUT the diagram changes in the vicinity of v.

MPI Informatik 24 Kurt Mehlhorn

Two Difficulties
� none of the papers discussed the case YES, BUT...

– they all started with: We assume our input to be in general position.

– we reformulated our geometric algs to make them work for all inputs.

MPI Informatik 25 Kurt Mehlhorn

Two Difficulties
� none of the papers discussed the case YES, BUT...

– they all started with: We assume our input to be in general position.

– we reformulated our geometric algs to make them work for all inputs.

� none of the papers mentioned that it might be difficult to make the case distinction,

i.e., to

compare dist � v 	 p
 and dist � v 	 l3
 �

� floating point arithmetic (even arbitrary precision) does not suffice

� we designed efficient and exact number types for algebraic numbers.

� the exact geometry kernels of LEDA and CGAL encapsulate them and make them

easily accessible.

MPI Informatik 26 Kurt Mehlhorn

Algebraic Formulation
� li: ai� x � bi� y � ci � 0, 1 � i � 3

� p � � 0 	 0

xv � int � 2c1c2 �� N � C

� N� � a1a2 � b1b2

yv � int � 2c1c2 � � N� C

� N� � a1a2 � b1b2

where

N � N1� N2 Ni � a2
i � b2

i C � a1a2� b1b2

x2
v � y2

v ? � a3� xv � b3� yv � c3
 2

a2
3 � b2

3

MPI Informatik 27 Kurt Mehlhorn

A Separation Bound for Division-Free Expressions

Let E be an expression with integer operands and operators � ,� ,� and� . Define

� u � E
 � value of E after replacing� by � .

� k � E
 � number of distinct square roots in E .

Then (BFMS, BFMSS)

E � 0 or � E � 1
u � E � 2k � E �� 1

Theorem allows us to determine signs of algebraic expressions by numerical computation

with precision � 2k � E �� 1
 logu � E
 .

related work: Mignotte, Canny, Dube/Yap, Li/Yap, Scheinermann

extensions: division, higher-order roots, roots of univariate polynomials

MPI Informatik 28 Kurt Mehlhorn

Discussion I

How small can A� B� C be, if non-zero? A 	 B 	 C� � .

� A� B� C � �
� A� B� C
 � A � B� C

A � B� C

� � A2� B2C �

� A � B� C �!

1

� A � B� C �!

1

� A � � � B �� C

This is a special case of the theorem

� u � E
 � � A � � � B �� C

� k � 1

MPI Informatik 29 Kurt Mehlhorn

Discussion II
� Consider E � � � x � 1 � � x
 � �� x � 1� � x
� 1 where x is an arbitrary integer.

� Observe E � 0.

� u � E
#" 4x � 1" 4x and k � E
 � 2.

� Thus

E � 0 or � E � 1
u � E � 2k � E �� 1

$ 1

� 4x � 3

� It suffices to evaluate E with precision 3log � 4x
 � 3logx � 6.

MPI Informatik 30 Kurt Mehlhorn

Numerical Sign Computation

sep � E
&% u � E
 1' 2k (E) ; // bound from previous slide

k% 1;

while (true)

* compute an approximation

+
E with � E�

+

E �� 2' k;

if (�
+

E �! 2' k) return sign �
+

E
 ;
if (2' k� sep � E
 , 2) return “sign is zero”; // since - E -. 2/ k 0 2/ k 1 sep 2 E 3

k% 2� k; // double precision

4
� +

E is computed by numerical methods

� worst case complexity is determined by separation bound:

maximal precision required is logarithm of separation bound

� easy cases are decided quickly (a big plus of the separation bound approach)

� strategy above is basis for sign test in LEDA reals.

MPI Informatik 31 Kurt Mehlhorn

The LEDA Number Type REAL

The theorem is packaged in the LEDA data type real. It provides exact arithmetic for

arithmetic expressions involving roots.

real x = ... some integer ...;

real sx = sqrt(x);

real sxp = sqrt(x+1);

real A = (sxp + sx) * (sxp - sx); // = 1

real B = A - 1; // = 0

cout << A.sign(); // 1

cout << B.sign(); // 0

If x has 100 binary places this takes less than .1 seconds. Run demo.

Reals are used in many geometric programs, e.g., Voronoi diagrams of line segments,

boolean operations on curved polygons, arrangements of ellipsoids, � � �

MPI Informatik 32 Kurt Mehlhorn

Demo: Real Numbers

please start demo cout/Numbers/real demo1

mehlhorn@mpino1119:/usr/local/LEDA-4.3.1/demo_cout/Numbers real_demo1

We demonstrate the LEDA number type real which gives you exact computation

with expressions involving roots.

Consider expressions A = (sqrt(x+5)+sqrt(x))*(sqrt(x+5)-sqrt(x))

and B = A - 5

The value of A is 5 and the value of B is 0.

The demo asks you for an integer L, chooses a random

integer with L decimal digits and computes the signs

of A and B.

L = 1000

The sign of A is 1. This took 0.01 seconds.

The sign of B is 0. This took 0.04 seconds.

MPI Informatik 33 Kurt Mehlhorn

Are Our Programs Correct?
� we start from correct algorithms

� we have a sound basis: exact geometry kernels and exact number types

� we document and test, and our large user community tests

� we use program checking (Blum, Kannan, Wassermann, Rubinfeld)

� many LEDA programs provide proof that their output is correct

and

checkers check proof.

� Example: is A� x � b solvable?

Output: yes no

Witness: x0 such that A� x0 � b c such that cT� A � 0

cT� b 5� 0

MPI Informatik 34 Kurt Mehlhorn

Standard Planarity Test

Input: a graph G

Output:
yes if G is planar

no if G is non-planar

Story

MPI Informatik 35 Kurt Mehlhorn

Standard Planarity Test

Input: a graph G

Output:
yes if G is planar

no if G is non-planar

Story

Yes, the implementor made a mistake, but the specification is to blame.

MPI Informatik 36 Kurt Mehlhorn

A Convincing Planarity Test

Input: a graph G

Output:

� a planar embedding, if G is planar

� a Kuratowski subgraph K5 or K3 6 3, if G is non-

planar.

0

1

2 3

4

� it is easy to check the witness

– checking the embedding: check Euler’s relation: n� m � f � 2.

– checking Kuratowski subgraph: check disjointness of paths

� finding witnesses is non-trivial. We use Lempel/Even/Cederbaum + Booth/Luecker for the

test, Chiba/Nishizeki/Saito for the embedding and M/Näher/Hundack for the Kuratowski

subgraphs; all linear time

� run planarity demo, planarity time, and, if time permits, matching demo.

MPI Informatik 37 Kurt Mehlhorn

Demo: Planarity I

please start demo/graphwin/graphwin and construct the leftmost graph shown

below (use the help button if you do not know how to construct a graph). Open the menu

Graph-Test and press planar. The message “graph is not planar” should appear.

Press the proof button and you should get the second picture from the left. It shows you a

K33 subgraph. Press the done-button and you should be back to the picture on the left.

Delete the only edge of G that is shown as a directed arc. Press the done-button once

more and you should be back to the first graph. Go to menu

Layout-PlanarLayouts and press Orthogonal.

0

1

2

3

4

5

6

7

�f This graph is ed not planar�lack, it contains a K_33 Kuratowski subdivison.

0

1

2

3

4

5

6

7
�f This graph is �lue planar�lack, I construct a planar drawing.

0

1

2

3

4

5

6

7

MPI Informatik 38 Kurt Mehlhorn

Demo: Planarity II

start demo cout/Graph/planarity time.

We illustrate the speed of algorithms related to planarity. There are two

planarity tests in LEDA, one based on Lempel, Even, Cederbaum and one

based on Hopcroft and Tarjan. The former is the fa-

ster and uses less space.

please type 1 if you also want to see the Hopcroft and Tarjan algorithm.1

Please start with n and m around ten-thousand.

n = 10000

m = 30000

Planar Graph

time for generation of graph = 0.22

time for planarity test, BL_PLANAR(G): 0.27

time for planarity test + embedding or Kuratowski, BL_PLANAR(G,K,true): 0.42

time for check, Genus(G) == 0: 0.05

time for planarity test, HT_PLANAR(G): 0.76

time for planarity test + embedding, HT_PLANAR(G,K,true): 1.25

Press any key to proceed.

MPI Informatik 39 Kurt Mehlhorn

Checking Convex Hulls (MNSSSS)

Given a simplicial, piecewise linear closed hyper-surface F in d-space decide whether F

is the surface of a convex polytope.

o

p

F is convex iff it passes the following three tests

1. check local convexity at every ridge

2. 0 � center of gravity of all vertices

check whether 0 is on the negative side of all facets

3. p � center of gravity of vertices of some facet f

check whether ray

7

0p intersects closure of facet different from f

MPI Informatik 40 Kurt Mehlhorn

Sufficiency of Test is Non-Trivial Claim
� ray for third test cannot be chosen arbitrarily, since in Rd , d! 3, ray may “escape”

through lower-dimensional feature.

o

MPI Informatik 41 Kurt Mehlhorn

Efficiency
� library use incurs significant overhead

� algs are designed to prove big-Oh statements, but for programs constant factors

matter

� low (near-zero) overhead library design

– careful design of basic data structures

– programming techniques that ease the task of optimizing compilers

� libraries open opportunities: complex algs

� design choices, heuristics, and analysis

Disclaimer: We do not have the best implementation for all problems.

MPI Informatik 42 Kurt Mehlhorn

Carefully Designed Basic Data Structures I

STL versus LEDA

Number of entries: 1000000

leda_map : stl_hash_map LEDA STL

--

ordered insertions 0.300 sec 0.520 sec

ordered lookups 0.050 sec 0.220 sec

random insertions 0.100 sec 0.220 sec

random lookups 0.070 sec 0.220 sec

--

total 0.520 sec 1.180 sec

� improved method for recognizing empty table positions

in demo cout/stl you can find more comparisons.

MPI Informatik 43 Kurt Mehlhorn

Near-Zero Overhead Library Design: Graphs (Bäsken, Näher, Zlotowski)

� LEDA offers three graph types: dynamic, static, static2 (not yet released)

� new graph data type: static2

– compact representation of edges v 8 w instead of � v 	 w

– vertical and horizontal allocation of arrays

A

B

C

– programming techniques that ease the task of optimizing compilers

– interface slightly less convenient than for dynamic graphs

– maybe the best graph data structure around

� all graph algs using LEDA will profit from redesign

MPI Informatik 44 Kurt Mehlhorn

Near-Zero Overhead Library Design II

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 20000 40000 60000 80000 100000

t
i
m
e

[
s
e
c
]

ak: |V| = 4x+6 |E| = 6x+7

Maxflow: UltraSparc IIi 440Mhz

20/09/01 19:31

dynamic graph
static_graph 1
static_graph 2

hi_pr (CG)

� dynamic graph, static1, static2 use same LEDA-program, but different graph

implementations

� CG is Cherkassky/Goldberg

MPI Informatik 45 Kurt Mehlhorn

Libraries Open Up Opportunities: Complex Algorithms
� weighed matching in graphs: Edmonds’ algorithm

Instance Blossom IV LEDA

Delaunay, n9 40 : 000 32 24

Random, n9 40 : 000, m9 6n 205 29

Difficult Instance, n9 151 : 780, m9 881 : 317 200,019 2,799

� Blossom IV (Applegate/Cook and Cook/Rohe)

– O � n3
 version of Edmonds’ algorithm due to Lawler and Gabow +

– many clever heuristics

� LEDA (M/Schäfer)

– O � nm logn
 version due to Ghalil, Micali, and Gabow +

– complex data structures (e.g., concatenable queues) +

– heuristics (e.g., to construct initial matching)

� we did not have to start from scratch

MPI Informatik 46 Kurt Mehlhorn

Summary
� Over the past 10 years we built

LEDA: Library of Efficient Data Types and Algorithms

CGAL: Computational Geometry Algorithms Library

� Main Difficulties

Correctness

– Algs are designed for Real RAMs, but real machines have ints and doubles.

� � exact arithmetic
– Programmers make mistakes � � program checking

Efficiency

– Library Overhead � � careful design

– Algs are designed to prove a big O statement � � design choices

– Complex algs require infrastructure � � libraries

System Architecture

– ease of use, flexibility, extendibility � � try them out

