10

SIAM J. COMPUT.
Vol. 6, No. 2, June 1977

A BEST POSSIBLE BOUND FOR THE
WEIGHTED PATH LENGTH OF BINARY SEARCH TREES®

KURT MEHLHORNY

Abstract. The weighted path length of optimum binary search trees is bounded above by
¥ B, +2Y a; + H where H is the entropy of the frequency distribution, Y B, is the total weight of the
internal nodes, and Y o, is the total weight of the leaves. This bound is best possible. A linear time
algorithm for constructing nearly optimal trees is described.

Key words. binary search tree, complexity, average search ime, entropy

One of the popular methods for retrieving information by its “name” is to
store the names in a binary tree. We are given n names B, B,,* - -, B, and 2n + 1
frequencies By, " * * » By @, " * * , @, With X B; +3 «; = 1. Here B, is the frequency
of encountering name B,, and a; is the frequency of encountering a name which
lies between B; and B, ,, @, and a, have obvious interpretations [4].

A binary search tree T for the names B,, By, " -, B, is a tree with n interior
nodes (nodes having two sons), which we denote by circles, and n + 1 leaves, which
we denote by squares. The interior nodes are labeled with the B; in increasing
order from left to right and the leaves are labeled with the intervals (B;, B;+,) in
increasing order from left to right. Let b; be the distance of interior node B; from
the root and let a; be the distance of leaf (B, B;,,) from the root. To retrieve a
name X, b, + 1 comparisons are needed if X = B; and a; comparisons are required
if B; < X <B;,,. Therefore we define the weighted path length of tree T as:

P=Y Bibi+ 1)+ Y aam.
j=0

i=l]

It is equal to the expected number of comparisons needed to retrieve a name.

In [4] D. E. Knuth gives an algorithm for constructing an optimum binary
search tree, i.e., a tree with minimal weighted path length. His algorithm operates
in O(n?) units of time and O(n?) units of space. In [6] we discuss the following
“rule of thumb” for constructing nearly optimal binary search trees: choose the
root so as to equalize the total weight of the left and right subtree as much as
possible, then proceed recursively. The weighted path len gth of a tree constructed
according to this rule is bounded above by 2+1.44-H, where H=
Y B log (1/B;)+ X a; log (1/a;) is the entropy of the frequency distribution. This
bound was recently improved by P. J. Bayer [1] to 2+ H. Here we discuss a
different rule of thumb suggested by [3] and prove the upper bound 1+3 a; + H
for the weighted path length. This bound is best possible.

The rule presented here as well as the rules described in [6] can be

implemented to work in linear time and space ([2)).

* Received by the edim? September 24, 1975, and in revised form June 1, 1976.
f Universitat des Saarlandes, 66 Saarbricken, West Germany
235

236 KURT MEHLHORN

We describe and analyze an approximation algorithm. The algorithm con-
structs binary search trees in a top-down fashion. It uses bisection on the set

i—1)
{Ss:s.z > Iup+,8p]+ﬁ,-+—;—' and ﬂéién},
p=0

1.e.. the root (k) is determined such that si_; =3 and s, =5. It then proceeds
recursively on the subsets {s,; i =k — 1} and {s;; i = k}. In the definition of the s; s
we assumed B, = 0 for ease of writing. The main program
begin
let s, t—Tp ola, +B,)+B:ta;/2 for0=i=n;
construct-tree (0, n, 0; 1)

end
uses the recursive procedure construct-tree:

procedure construct-tree (1, j. cut, [);
comment we assume that the actual parameters of any call of construct-tree satisfy

the following conditions.
(1) i and j are integers with 0=i<j =n,
(2) lis an mtﬂger with [=1,
(3) cur-ZI - w1th X E{D 1} for all p,
4} cut = s; ‘:s <cut+2"'

A call construct-tree (i, j, —, —,) will construct a binary search tree for the nodes
GFL.---,(and the leaveslil - - - ,[j:
begin

if i+1=j (Case A)
then return the tree shown in Fig. 1.
else comment we determine the root so as to bisect the interval

(cut, cut+2-"7")

begin

determine k such that

5) i<k=j

(6) k=i+1ors;,_, =cut+2"

(7) k=] or sy =cut+2"

comment k exists because the actual parameters are supposed to satisfy
condition (4);

if K =i+1 (Case B)

then return the tree shown in Fig. 2:
if Kk =j (Case C)

then return the tree shown in Fig. 3;
if i +1<k<j (Case D)

then return the tree shown in Fig. 4.

end
end procedure construct-tree;

WEIGHTED PATH LENGTH OF BINARY SEARCH TREES 237

Fig. 1

construct-tree (i + 1, j, cut+2"", [+1)

FiG. 2

construct-tree (i,j—1, cut, [+1)

Fig. 3

construct-tree (i, k — 1, cut, [+1) construct-tree (k, j, cut+27", [+1)

Fic. 4

LemMA. The approximation algorithm constructs a binary search tree whose

weighted path length P.,... is bounded above by 1+ Y a;+H.

Proof. We state several simple facts.
Facr 1. If the actual parameters of a call construct-tree (i, J, cut, l) satisfy

conditions (1) to (4) and i + 1 # j, then a k satisfying conditions (5) to (7) exists and
the actual parameters of the recursive calls of construct-tree initiated by this call
again satisfy conditions (1) to (4).

Proof. Assume that the parameters satisfy conditions (1) to (4) and that
i+1+#j. In particular, cut =s;, =cut + 2-"*1 Suppose, that thereisno k, i <k =,
withs, ; =cut+2 "ands, =cut+2 " Theneitherforallk,i <k =j, s <cut+ T
or forall k, i <k =j, s, >cut+2"". In the first case k = j satisfies (6) and (7), in the

238 KURT MEHLHORN

second case k =i+ 1 satisfies (6) and (7). This shows that k always exists. It
remains to show that the parameters of the recursive calls satisfy again (1) and (4).
This follows immediately from the fact that k satisfies (5) to (7) and that: + 1+
and hence s, =Zcut+2 "' in Case Band s,_; =cut+2 ' in Case C. Q.E.D.

FacT 2. The actual parameters of every call of construct-tree satisfy condi-
tions (1) to (4) (if the arguments of the top-level call do).

Proof. The proof is by induction, Fact 1 and the observation that the actual
parameters of the top-level call construct-tree (0,n.0,1) satisfy (1) to

(4). Q.E.D.
We say that node @ (leaf [A] resp.) is constructed by the call construct-tree

(i,j,cut, l)if h=j (h=ior h=j)and Case Aistakenorif h=i+1(h=1i)and
Case B is taken or if h =) (h =j) and Case C is taken or if h =k and Case D is
taken. Let b; be the depth of node (D and let @, be the depth of leaf [j]in the tree

returned by the call construct-tree (0, n, 0, 1).

Fact 3. If node ® (leaf [h] is constructed by the call construct-tree
(i, j, cut. 1), then b, +1=1 (a, =1).

Proof. The proof is by induction on L

FAact 4. If node @B (leaf [h]) is constructed by the call construct-tree

(i,j, cut, 1), then B, =27 (e, =27'7).
Proof. The actual parameters of the call satisfy condition (4) by Fact 2. Thus

27! =s;—5i=(;+a)/2+ B +ap +- - +B;
= By, (resp. a/s). Q.E.D.

FAct 5. The weighted path length P,,,... of the tree constructed by the
approximation algorithm is bounded above by } B; +2} a; + H.
Proof.

Papprnx '__Zﬁi{bi * I)"'Z &jﬂg’
=Y Bi(log (1/B;)+ 1)+ a;(log (1/a;)+2)
=) B;+2-) a;+H. O.E.D.

THEOREM. Letay, By, ay, - - -, B, @, be any frequency distribution, let P, be
the weighted path length of the optimum binary search tree for this distribution, let
P,oorox be the weighted path length of the tree constructed by the approximation
algorithm, and let H=—) B; log B —Y a; log a, be the entropy of the frequency
distribution. Then

P Ponea =0 5 +2-) o+ H.

Furthermore, this upper bound is the best possible in the following sense: if
¢, X B:+¢2Y a;+c; - Hisan upper bound for P, thenc, = 1,c,=2,andc; = 1.

Proof. The first part of the theorem follows from the preceding lemma. The
second part is proven by exhibiting suitable frequency distributions:

c;=1: Taken=1,ap=a,;,=0and B, =1.
C:%E:Tﬂkﬂn-‘-l ﬂ';}:ﬂ'z:ﬁ]:ﬁz:ﬂ,{li=1.
c3=1: Take n =2%—1, 8, =0forall i and a; =27 for all .

WEIGHTED PATH LENGTH OF BINARY SEARCH TREES 239

It is easy to see that the complete binary tree is the optimal binary search tree
for this distribution. Thus

H=log(n+1)=k= Y (1/2%)- k=P, Q.ED.

leaves

REFERENCES

[1] P.J. BAYER, Improved bounds on the cost of optimal and balanced binary search trees, M.Sc. thesis,
Mass. Inst. of Tech., Cambridge, MA, 1975.

[2] M. L. FREDMAN, Two applications of a probabilistic search technique : Sorting X + Y and building
balanced search trees, Tth Symp. on Theory of Computing, Albuguerque, NM., 1975.

[3] E. N. GiLBERT AND E. F. MOORE, Variable-length binary encodings, Bell System Tech. J., 38
(1959), pp. 933-968.

[4] D. E. KNUTH, Optimum binary search trees, Acta Informatica, 1 (1971), pp. 14-25.

[5] . The Art of Computer Programming, vol. 3, Addison-Wesley, Reading, MA , 1973.

[6] K. MEHLHORN, Nearly optimal binary search trees, Acta Informatica, 5 (1975), pp. 287-295.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5

