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Preface

This thesis is about combinatorial games—mostly. It is also about
graphs, directed graphs and hypergraphs, to a large extent; and it deals with
the complexity of certain computational problems from these two areas. We
study three different problems that share several of the above aspects, yet,
they form three individual subjects and so we treat them independently in
three self-contained chapters:

The angel-devil game. In the first chapter, we present improved
strategies for an infinite game played on an infinite chess board, which has
been introduced by Berlekamp, Conway, and Guy [8]. The angel, a chess
person who jumps from square to square, tries to escape his opponent, the
devil, who intends to strand the angel by placing obstacles on the board.

The open question about this game is, whether some angel who is allowed
to make sufficiently large but bounded steps in each move, will be able to
escape forever. Conway [11] has shown that certain quite natural escape
attempts are bound to fail.

We attack this problem from the devil’s perspective, trying to improve
upon a result from [8], which established that the ordinary chess king, who
can be considered as an angel of minimal power, cannot escape. A reformu-
lation of the game which focuses on the angel’s speed as the crucial quantity,
allows us to show that certain faster “chess kings” can still be trapped. A
second part of this chapter deals with angels on a three-dimensional board.
We show that the new dimension grants the angel enough freedom to escape
forever.

Weak positional games on hypergraphs. The games in the second
chapter are very general versions of the well-known game of Tic-Tac-Toe.
Two players alternately claim vertices of a hypergraph, the first player trying
to get all vertices within some edge, his opponent striving to prevent this
from happening.

Such weak positional games are known to be PSPACE-complete, but
the respective hardness result from [39] utilizes edges of size up to 11. We
analyze the restricted class of hypergraphs whose edges contain no more than
three vertices each, trying to find optimal strategies for both players. We
almost succeed. Under the additional restriction of almost-disjointness, that
is, any two edges may share at most one vertex, we obtain a classification
of such hypergraphs into those that yield a first player win and those who
don’t, which immediately leads to efficiently computable optimal strategies
for either player. Eventually, a new framework is introduced for describing
values that individual parts of a hypergraph contribute to a game that is
played on the whole hypergraph.
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iv PREFACE

The complexity of digraph root computation. The final chapter
is not about games. A kth root of a square Boolean matrix A is some other
matrix R with Rk = A. Interpreting A as a the adjacency matrix of a
directed graph (digraph), we get an induced notion of powers for digraphs:
the digraph Dk has an arc from a to b iff there is a walk of length exactly k
from a to b in the digraph D.

The computational complexity of deciding whether a given Boolean ma-
trix or, equivalently, a given digraph has a kth root, has been an open
problem for twenty years. We answer this question by proving the problem
NP-hard for every single integer k ≥ 2. Our NP-completeness proof takes
the graph-theoretic view, using basic concepts like paths, cycles, and vertex
neighborhoods.

Besides the phenomena that make root finding hard, we discover a re-
lation between digraph roots and graph isomorphism which materializes in
form of an isomorphism-completeness result: For a special class of digraphs
defined through arc subdivisions, root finding is of the same complexity as
deciding whether two digraphs are isomorphic. This may come as a surprise
since all problems known to be of this complexity are more or less obviously
isomorphism problems. In abridged form, the results from this chapter have
already appeared in [28].
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CHAPTER 1

The Angel Problem

1. Angels, Kings, and Fools

Two players, the angel and the devil, play a game on an infinite chess
board whose squares be indexed by pairs of integers. The angel is an actual
“person” moving across the board like some chess piece, while his opponent
does not live on the board but only manipulates it. In each move, the devil
blocks an arbitrary square of the board such that this location may no longer
be stepped upon by the angel. The angel in turn, flies in each move from
his current position (x, y) ∈ Z2 to some unblocked square at distance at
most k for some fixed integer k, i.e., to some position (x′, y′) 6= (x, y) with
|x′ − x|, |y′ − y| ≤ k. Note that devil moves are not restricted to the angel’s
proximity or limited by any other distance bounds; he can pick squares at
completely arbitrary locations.

The devil wins if he can stop the angel, that is, if he manages to get
him in a position with all squares in the (2k + 1) × (2k + 1) area around
him blocked. The angel wins simply if he succeeds to fly on forever. The
open question is, whether for some sufficiently large integer k the angel with
distance bound k, called the k-angel, can win this game.

First variants of this game were discussed by Martin Gardner [17], who
names D. Silverman and R. Epstein as original inventors. Though his article
deals mainly with finite configurations, i.e., the question whether a chess king
(which is simply a 1-angel) can reach the boundary of a given rectangular
board, he also asks for a strategy against a chess knight on an infinite board,
possibly with a devil who gets to play more than just one block per move. In
it’s present form the angel game first appeared in Berlekamp, Conway, and
Guy’s classic [8] (Chapter 19). Amongst detailed analyzes of games with
kings and other chess pieces on finite boards against devils with certain
additional restrictions, the authors coin the names “angel” and “devil” for
the two competitors and give a thorough proof that the chess king can be
caught on a 33 by 33 board. Then Conway [11] focused entirely on the
infinite angel game, trying to explain possible pitfalls with certain natural
escape attempts and pointing out the hardness of the problem. Besides all
variants, the central open question remains whether some angel of sufficient
power can escape forever. In his overview article [14], Demaine cites it as a
difficult unsolved problem of combinatorial game theory.

In this present work, we present modest advances on the current best
known devil strategy. Therefore we introduce a slight reformulation of the
original game, which allows us to focus on speed as the important parameter.
In a further part, we treat a higher-dimensional analog of the angel game,
showing that an angel of sufficiently large power can escape in 3D.

1



2 1. THE ANGEL PROBLEM

Catching the chess king. The only case for which the k-angel problem
is solved is k = 1, the ordinary chess king. We like to sketch a winning
strategy for the devil, which is motivated by the analysis in [8]. This shall
get us some feel for the game and make us familiar with some basic principles
that will turn up every now and then. The basic ideas are quite simple.
Maybe the reader likes to stop reading here for a while and enjoy figuring
out such a strategy on his own.

Assume the devil wants to prevent the king from crossing a certain
horizontal line. With three squares above the king already blocked on that
line, like in Figure 1, this is easily achieved. The devil simply answers a
king’s move a to the right by an extension of that triple block by a play at
u. A further move to b is countered by v and likewise, any left movement
to a′ is blocked at u′. Pushing along in this simple fashion ensures that
wherever the king goes, the three squares above him will always be blocked,
making a crossing impossible.

u

aa′

u′

b

v

Figure 1. Pushing the chess king along a line.

It is not difficult to get the three initial blocks placed on a blank line
when a king is just approaching. In the left drawing of Figure 2, the king
is only five steps away from the desired line along the upper rim, where the
devil has just played his first block. We claim that however the king now
approaches that line, the devil will always manage to get his triple block in
place.

If the king makes one step forward to a, the devil replies at u. After
that the moves b′ and b′′ both lead directly to a triple block by the devil
answers v′ and v′′, respectively. So we only have to consider a king’s move
to b. The devil plays at v, after which the king’s moves c′ and c′′ are both
blocked by v′. This leaves only a step to c, which is countered by w. Now
the king’s right-most option d can be blocked at x and the moves to d′ or
d′′ again lead to a triple by v′,

The second option for the king’s first move is a in the right drawing of
Figure 2. (A move to a′ being symmetric to this case.) The devil plays at u.
Against a step to b′, the devil immediately forms a triple block by playing
v′. The two moves to b and b′′ lead to symmetric configurations, so we need
only consider the remaining option b. The devil replies v, after which c is
countered by w, and c′ and c′′ can both be blocked at v′.

So five preparation steps suffice for the devil to get his triple block
in place against an approaching king. Figure 3 shows in a slightly non-
proportional drawing how to turn the above wall-pushing argument into a
successful devil strategy for catching the chess king. With his first 44 moves,
the devil blocks some squares in the four corners of an imaginary box around



1. ANGELS, KINGS, AND FOOLS 3
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Figure 2. Getting the triple block in place.

the king. The box must be chosen large enough to ensure that during this
preparation phase the king does not get too close to the boundary of that
box. After that, the devil plays the above wall-pushing strategy along the
dotted lines whenever the king approaches such a line. The four corners are
there to ensure that the devil can never be forced to play on two fronts at
the same time.

Figure 3. Catching the chess king.

We leave the argument at this informal state, hoping that the reader has
grasped the idea. We are headed for a stronger result, which we shall then
prove in full detail. As we already said, a deeper analysis of the chess king,
very similar to the above discussion, can be found in Chapter 19 of [8].

The fool argument. The first general idea for an escape with a k-
angel might be to run away in one direction. If the power k is large enough,
shouldn’t the angel somehow be able to go faster than the devil putting
any serious obstacles in his way? Maybe the angel can simply run away in
one direction. The answer is no! Conway defines a k-fool to be a k-angel
who commits himself to strictly increasing his y-coordinate in every move.
He shows that a fool of any power k can be caught [11]. The argument is
simple, so we take the time to recapitulate it here.

The restriction on the y-movement implies that from a fixed position
the k-fool can reach only squares within a cone of slope n. The devil sets
out to build a long barrier at a far distance across this cone so that the fool,
once he gets there, will stand in front of an impenetrable wall. Note that
in order to block a k-fool effectively, we need a thick wall of k consecutive
lines. We clearly cannot build such a solid wall across the whole width of
the cone because already a 2-fool would arrive at the construction site much
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earlier than the devil could finish his work. Conway’s trick is the following
dynamic refinement strategy.

Say, our desired barrier shall be h units to the north. There the cone of
possible future fool positions has width 2hk + 1, so that a complete wall of
thickness k at that distance would consist of about 2hk2 squares. The devil
begins filling this wall partly. With his first h/(2k) moves, while the angel
gets half way to the distant line, he blocks about 1 out of 4k3 squares there,
distributing his moves evenly over the full width. Once the fool reaches the
center line, the devil determines the new cone of potential fool positions,
which by simple geometry, covers only half of the original wall. The devil
then spreads his next h/(4k) moves evenly on that segment of the construc-
tion site that can still be reached by the fool. See Figure 4.

Figure 4. Catching a fool.

He obviously gets the same proportion of about 1 out of 4k3 squares
blocked there until the fool has reduced his distance to the wall to h/4. If
the initial distance h was chosen large enough, we can iterate this process
often enough (about 4k3 times) to finish the relevant part of our barrier
before the fool arrives.

This argument generalizes to non-strict fools, i.e., angels who are not
allowed to make a step in negative y-direction, and it is not limited to one
direction. There is also a radial variant where the angel never decreases his
distance to the origin. The detailed arguments are given in [11].

Conway’s fool counter already indicates that devising an escape strategy
for some angel might be a very difficult task. By a simple dove-tailing argu-
ment this result can even be turned into the following surprising fact [11].

1. Theorem (“Blass-Conway diverting strategy”). There is a strategy
for the devil with the following property. For each point p of the plane and
each distance d, no matter how the angel moves there will be two times
t1 < t2 such that at time t2 the angel will be d units nearer to p than at
time t1.

This diverting strategy does not imply, however, that the angel must
run in a wild zig-zag across the board. Concrete bounds on t1 and t2 are
astronomical, so that the angel has plenty of time to comply with those re-
quirements. But Theorem 1 can be used to immediately disqualify a variety
of ad-hoc angel strategies, like refinements of the fool approach, that do not
allow for sufficient freedom of movement in all directions. After all, Conway
himself believes that some angel can escape. He awards $100 for an escape
strategy for an angel of some sufficiently high power k.
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2. From Finite to Infinite Games

Before we go on to devise strategies for angel and devil, let us pause a
while to discuss some fundamental aspects of infinite games in general. Such
games may behave a little weird: It may be that neither player can force a
win, i.e., there exist no winning strategies, even though the game does not
allow for draws.

Formally, an infinite game is simply a subset A of NN. A play is an
infinite sequence τ = (x0, y0, x1, y1, . . .) of natural numbers where Players
1 and 2 choose the xi and yi, respectively, in turns, and Player 1 wins iff
τ ∈ A. A strategy is a mapping from all possible finite initial segments of a
play to the next move, i.e., a mapping from the set N∗ of finite words to N
and it is a winning strategy if it wins against all possible opponent plays.

It is well-known that the axiom of choice allows the construction of games
in which neither player has a winning strategy [23, Sec. 43]; but Martin [32]
proved that for games that are Borel sets this cannot happen, such games
are determined : one of the two players must have a winning strategy. This
result covers essentially all games that can be defined in simple ways. Any
“reasonable” game will be determined. And so is the angel-devil game.
However, we do not need the full power of Martin’s deep theorem. The
following Lemma is an easy adaptation of an earlier, simpler result of Gale
and Stewart [16]. I want to thank Stefan Geschke for intoducing me to these
set-theoretic foundations of infinite games and for helpful discussions about
the arguments in this section.

2. Lemma. The angel-devil game is determined. That is, either the angel
or the devil has a winning strategy.

Proof. Assume the devil has no winning strategy. The angel can play
as follows. In each turn he makes a move after which the devil does not
have a winning strategy. By induction, such a move must always exist since
otherwise the devil would have a winning strategy. The resulting angel
strategy is obviously a winning strategy, simply because it allows the angel
to play forever. �

Of course, one could define the above strategy for any given infinite
game. The decisive point is that usually such a strategy does not automat-
ically yield a win as is the case with the angel-devil game.

A further observation, which is useful when thinking about our game,
is that in a sense it is infinite only from the point of the angel. If the devil
wins, the game ends, by definition, after finitely many moves. So it seems
that if the devil can win at all against the k-angel, there should exist some
constant Nk such that the devil can catch the k-angel in at most that many
moves. Equivalently, if some angel should be able to survive M moves, for
any arbitrarily large number M that is fixed at the beginning of the game,
then he should also be able to escape forever.

These seemingly obvious implications bear a subtlety. It could in princi-
ple be possible that the angel would have to choose his strategy dependent
on the given M , so that he can in deed escape for M moves as required but
will be caught a little later. If he had wanted to survive longer he might
have had to choose a different strategy. Ultimately, there might not exist
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a strategy that works for all M at the same time. Seen from the devil’s
perspective this would mean that while he is sure to catch the angel after a
finite number of moves, there might not be a universal bound on the time
that is required to catch him. Fortunately, our concerns are needless.

3. Lemma. If the devil has a winning strategy against some angel then
there exists a bound N such that the devil can stop that angel in at most
N moves. Conversely, if the angel can survive for any arbitrarily large,
previously given number of steps then he can escape forever.

Proof. Assume that the devil has a winning strategy. Consider the
game tree of all possible plays under such a devil strategy σ. It has a
bounded number of options at each angel node (no more than (2k + 1)2)
and just one option at each devil node, namely the one prescribed by σ. The
leaves are exactly those positions in which the angel cannot move anymore
and thus has lost. This tree contains no infinite paths because such a path
would directly give the angel an infinite sequence of moves, in contradiction
to our assumption that σ is a winning strategy.

Since the degree of the tree is bounded and it contains no infinite paths,
it is finite by König’s lemma and therefore has finite depth, N , say. This
means that the strategy σ allows no more than N moves before the angel is
stuck, independent of how the angel plays.

The second statement is equivalent to the first. If the angel can escape
as long as required by the beginning of the game, the devil cannot have a
strategy that catches him after a fixed number of moves. Hence, the devil
has no winning strategy at all, which means by Lemma 2 that the angel can
escape forever. �

3. The Need for Speed

There is pretty little known about even very weak angels. Already the
destiny of the 2-angel is not settled and even more, it is unknown whether a
chess knight, i.e., a piece that jumps in each move to one of the eight squares
at Euclidean distance exactly

√
5, can be caught.

We do not have a solution for the 2-angel, either, but we make a first step
in this direction by devising devil strategies against opponents whose power
lies somewhere between that of a 1-angel and the strength of 2-angel. The
improvement is rather modest but the new concepts we need to introduce
in order to obtain them or even state them, reveal details of the game that
seem to lie hidden with Conway’s original angels.

Let us take a closer look at what happens when we upgrade the original
chess king to a 2-angel. This is already a large step. The improvement is
actually two-fold. Not only does the 2-angel move at twice the speed, any
barriers must also be twice as thick to hold him back. In a sense, the 2-angel
can be said to be 4 times stronger than the 1-angel. We focus on the first
aspect: speed ! We would like to suppress the ability to jump over obstacles
as an undesired side effect. Define a k-king as a player who in each turn
makes exactly k ordinary king’s moves, while the devil still gets to place
one block per turn. The point is that now every single king’s move must be
valid, the k-king cannot fly across obstacles.
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If we want to use kings for the study of the angel problem, they should,
in some qualitative sense at least, be equivalent to angels. Obviously, a k-
angel is stronger than a k-king. An escape strategy for a king can be used for
an angel of the same power as well. The converse is, of course, not true—not
for trivial reasons at least—but we can show that if you can catch kings of
arbitrary power k then you can also catch any angel. Before we come to this
reduction, let us first remark on a subtlety in the above argument.

A k-king could in principle use a sequence of k steps to run a circle
and return to his starting position, thereby simulating a pass between two
consecutive devil moves. An angel is formally not allowed to pass. So our
trivial transformation from above had a little flaw. The following basic no-
return lemma by Conway [11] repairs this defect. It works for k-kings as
well as for k-angels and will be needed once more later on.

4. Lemma. If the k-angel or k-king can escape then he can also escape
without ever visiting any square twice; where in the case of the king we only
consider the last step of a sequence of k steps between two devil moves.

The restriction to the last step in a sequence of k king steps is natural
because that final location is always the one that the devil sees when it’s
his turn. For the intermediate positions the following argument would not
work.

Proof of Lemma 4. We assume that we have a winning devil strategy
σ against a non-returning k-angel or k-king and derive from that a winning
strategy against the non-restricted versions. The idea is simple. When the
angel/king revisits a location, the situation is always worse than at his first
visit. The set of blocks has only grown. We turn this observation into a
formal proof.

The devil plays according to σ until the angel/king lands on a square
p he has already visited before. In this case the devil blocks an arbitrary
square from the (2k + 1) × (2k + 1) area around p. Now he simply forgets
all moves since his opponent first visited p and resumes the strategy σ from
that position. The point is that his reply to the angel’s/king’s move to p
has already been played when he had answered to p the first time, so that
his intermediate move was really for free and he did not fall behind with σ.

We must be precise about what we mean by “forget.” The intermediate
moves, since the first play of the revisited square p, are really erased from the
devil’s memory. So when the angel steps on a square he had been before but
the devil has forgotten about that move, he plays on without backtracking.
Otherwise we would have to show how forward jumps in σ, that is, jumps
to a location that has been visited in the forgotten future, should be treated
consistently.

The result of the described devil play is, of course, that the angel/king
cannot return more than (2k + 1)2 times to the same location because then
he would not be able to leave it again due to its barred environment. Con-
sequently, the derived strategy wins just as σ does. �

Lemma 4 also shows that a little inaccuracy in our definition of the game
is inconsequential. We have not said explicitly whether the devil should be
allowed to block the square on which the angel currently sits. Since we may
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assume that the angel may never return to that position anyway, the devil
will never need to make such a move.

We now establish the announced equivalence of angels and kings. Of
course, the reduction from angels to kings requires an increase in speed.

5. Proposition. If the k-angel can escape then so can the 99k2-king.

Proof. We derive an escape strategy for the 99k2-king from an escape
strategy for the k-angel. While the king plays against the “real” devil, we
set up an additional, imaginary board with an imaginary k-angel, where we
simulate the action on the king’s board through appropriate transformations.

The king’s board is partitioned into a regular grid of sidelength-18k2

boxes. Likewise, the angel’s board is segmented into blocks of sidelength
k. The boxes of the two worlds are in one-to-one correspondence with each
other, in the obvious fashion: the box containing the king’s starting point
corresponds to the angel’s initial box and further all adjacencies are pre-
served. These partitions and the correspondences are fixed once and for all
at the beginning of the game.

We play as follows. When the devil blocks some square in the king’s
world, we cross out an arbitrary empty square from the corresponding box
in the angel’s world or from one of the eight adjacent boxes there.

When it’s the king’s turn, we use our escape strategy for the angel to
get a move in the imaginary world. This move is then translated into the
king’s plane by a movement of the king into the corresponding box there.
For example, in Figure 5 the angel jumps from his current box into the next
box to the north; then the king runs into the northern box in his world,
too. The precise position within that box is completely independent of the
angel’s position in his box, however. It will depend on the following technical
details.

Figure 5. Simulating a king by an angel.

We have to describe precisely how the king should run and also prove
that the required movement will always be possible. Observe that when the
angel can jump into some box, the devil cannot have blocked all k2 of its
squares. From our simulation rule for devil moves, we conclude that the
corresponding box in the king’s world and also the eight surrounding boxes
there contain less than 9k2 devil blocks each.

Knowing that a target box in the king’s world contains less than 9k2

blocks, we can now find a route for the king. We introduce an invariant for
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king positions: the king only stops at locations from where the four lines into
the four axis parallel directions within the current box are completely free.
We maintain this invariant to always ensure a free passage for the king into
his target box. Assume the king needs to go one box to the east. The density
bound of 9k2 guarantees that in both orientations, vertical and horizontal,
strictly more than half of the 18k2 lines are completely empty, in each box.
This implies that there are at least two free long horizontal lines through
both boxes. It is easy to see that from his good position with free roads in at
least three directions (the fourth direction possibly blocked by the last devil
move) the king can reach such a line in less than 9k2 + 18k2 = 27k2 steps,
as shown in Figure 6. (The additional 9k2 moves result from a possible
detour, which won’t take longer, because there are at most 9k2 blocks in
the whole square.) Then it takes no more than another 36k2 steps to reach
a good position in the target box. If the king is headed for one of the four
diagonally connected boxes, he first makes a stop-over in the horizontal or
vertical direction and proceeds from there with at most another 36k2 steps.
This gives a total of less than 99k2 steps.

Figure 6. The king runs into a neighboring box.

Again a remark on passing. Since the king is forced to use up all his 99
moves in each turn, he might in principle get in troubles when he arrives
at his destination too early. However, zugzwang is not really an issue here
because the king finds enough empty squares along the side of his road to
waste arbitrary numbers of moves by running in little circles. �

We emphasize again that the quantitative proportion of the above re-
duction is not our main concern. The purpose of Proposition 5 is only to
establish the qualitative equivalence between angels and kings, as a legiti-
mation to use kings as a tool to attack the angel problem.

Preparing fences. Let us have a closer look at the devil strategy
against the 1-king from the beginning. It seems we wasted some poten-
tial there. After the preparation of the corners, the devil simply sits and
waits for the king to arrive at one of the four sides. Couldn’t he perhaps use
this time for some further preparations so that he can catch a faster king, a
2-king, maybe.

The basic idea for the king counter was our dynamic-wall argument,
where we had the king pushing along a line without ever letting him break
through. Can we extend this method to the 2-king? Since the 2-king makes
two steps for each devil move, it would suffice to have every second square
along the desired frontier already in place. Starting from the initial position
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in Figure 7 with only two additional squares blocked, the devil can push
along with the 2-king by answering the double move a1, a2 at u, then b1, b2

at v, and so on.

a1 a2

u

b1

v

b2

Figure 7. A wall against the 2-king.

How long would it take the devil to prepare such a density-1/2 wall
against the 2-king? Since he needs to block 1 square out of 2, he can set
up such a wall at an absolute speed of 2, which is exactly the speed of the
2-king. In other words, the devil can build such fences against the 2-king
at the same speed the 2-king runs. For example, a 2-king who sits at the
bottom of a square box of sidelength R with solid walls to the east, west,
and south but completely open to the north is lost. We just learnt that the
devil can build a fence of density 1/2 across that open gate in the north, in
just the time it takes the 2-king to get there. Hence, the 2-king can never
leave that box.

Can we extend these ideas to encircle the 2-king completely? The answer
is yes—almost. We shall present successful devil strategies against any king
of speed 2− ε for any fixed real ε > 0. First, of course, we have to say what
such a statement shall mean. We need a definition of fractional, or even
irrational speed.

Real kings. What is a 3/2-king? On average he should get to make
three king’s steps for 2 devil steps, which we could realize by a move sequence
like KKKDDKKKDD . . ., which shall mean that the king makes 3 steps,
then the devil blocks 2 squares, and so on. However, such a concept would
depend on the actual representation of a rational number. The 6/4-king
would get a different sequence. We could get around this by demanding
reduced fractions but then a 1001/8-king would behave completely different
from a 1000/8-king, who should simply be the 125-king. What’s worse,
the grouping of devil moves can be lethal for the king. For example, the
eight consecutive devil moves in the sequence K1001D8K1001D8 . . . could
be used to encircle the king completely, even though his average speed would
be greater than 125.

What we want are move sequences that approximate a given speed α ∈
R+ as fair as possible, avoiding unnecessarily large chunks of moves for either
side. The sequence (un)n∈N defined by [2]

(1) un =
⌊
(n + 1)γ + φ

⌋
−

⌊
nγ + φ

⌋
∈ {0, 1} with γ =

α

α + 1
∈ (0, 1)

and some constant offset φ ∈ R shows this behavior—if we interpret 1’s in
the sequence as the king’s and 0’s as the devil’s moves.

This sequence (un) is easy to understand; it simply compares consecutive
elements of the arithmetic progression (nγ + φ). Whenever there lies an
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integer between the nth and the (n + 1)st element of (nγ + φ), we have
un = 1, otherwise, when the two elements fall in a common integer gap, (1)
evaluates to un = 0. We conclude that the frequency of 1’s in (un) is γ,
hence the frequency of 0’s is 1− γ and we get (cf. [2])

(2) lim
n→∞

|{i ≤ n : ui = 1}|
|{i ≤ n : ui = 0}|

=
γ

1− γ
= α.

The sequences (un) are called Sturmian sequences if α is irrational, and
they are well-studied. See [2] for a broad treatment and for historic refer-
ences.

6. Definition. For α ∈ R+ we define the α-king to be a king whose
move sequence is given by (1) with φ = 0. This means that in the n-th time
step the king moves by one square if un = 1 and the devil gets to block a
new square if un = 0.

The choice of the offset φ looks arbitrary. For a natural definition it
would be desirable that the chances of the α-king in the game do not depend
on this parameter. And in fact, they don’t.

7. Lemma. Any two kings with move sequences generated by (1) with
the same speed parameter α but different φ’s either can both escape or can
both be caught.

Proof. Let (un) be a sequence defined by (1) with offset φ and let (u′n)
be another sequence defined with some other offset φ′, both with the same
α, though. We distinguish rational and irrational α.

For α ∈ Q we write γ = p/q in reduced form. Obviously both sequences
are periodic with period q. All we have to do is to align them in the right
way. Partition the unit interval into congruent half open intervals of length
1/q and let r ∈ {0, . . . , q − 1} be the index of the residue class with

φ ∈
[
m +

r

q
,m +

r + 1
q

)
for some m ∈ Z.

We look for some index j, where the sequence (jp/q + φ′) hits the same
residue class; i.e.,

j
p

q
+ φ′ ∈

[
m′ +

r

q
,m′ +

r + 1
q

)
for some m′ ∈ Z,

which clearly exists because p and q are coprime. It is easy to see that

un = u′n+j for all n ∈ N.

If the devil has a winning strategy on the move sequence (un), he can there-
fore also win on (u′n) by simply waiting j time steps and then starting to
play according to the strategy for (un). By exchanging (un) and (u′n) we get
the converse simulation.

For irrational α the sequences (un) and (u′n) are non-periodic. We use
a deeper result from the theory of such Sturmian sequences: The set of
contiguous subwords of the sequence (un) depends only on α and not on
the offset φ [2]. (Even more, there are exactly n + 1 different subwords of
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length n and each of them occurs infinitely often in un.) Therefore, any
initial segment of (un) can also be found somewhere in (u′n).

Since Lemma 3 tells us that if the devil can win on the move sequence
(un), he can do so in a bounded number of N steps, say, he can use a strategy
on (un) to win on (u′n) by simply waiting until a copy of the N -prefix of
(un) starts in (u′n) and then pursuing this strategy. �

For α ∈ N, the above definition of an α-king obviously coincides with
the previous one that was restricted to integral speed. For α = k ∈ N+ the
defining sequence (1) produces exactly k 1’s between any two consecutive
0’s, just as expected. It is also clear that our notion of an α-king fulfills
our wish for fairness, large chunks of devil moves cannot occur. One easily
checks that for α ≥ 1, the devil never gets to block two squares at a time.
On the other hand, we can guarantee that not only in the long run but also
locally, the devil always gets his share of moves.

8. Definition. A 0/1-sequence is (s, t)-bounded, s, t ∈ N+, if every
contiguous subword that contains strictly more than s occurrences of 1’s
contains at least t occurrences of D. We call a king with a given move se-
quence (s, t)-bounded if the sequence is (s, t)-bounded. (Where we interpret
1’s as king’s moves and 0’s as devil moves.)

9. Lemma. An α-king, α ∈ R+, is (s, t)-bounded for every pair s, t ∈ N+

with α ≤ s/t.

The “strictly” in the definition appears for a technical reason; it does
not mean that we get only t devil moves per s + 1 king moves on average.
Namely, starting from any 1 in the sequence, we count 0’s until we reach the
(s + 1)st 1. By then we have passed at least t 0’s. When we read on until
the (2s + 1)st 1 shows up, we are sure to have counted at least 2t 0’s. And
so on. Before the (rs + 1)st 1 appears, we are guaranteed to read at least
rt many 0’s.

Proof of Lemma 9. Assume we have s + 1 many 1’s between two po-
sitions a and b (inclusively) in the sequence (un). Telescoping (1) yields

s + 1 ≤
∑

a≤i≤b

ui =
⌊
(b + 1)γ + φ

⌋
−

⌊
aγ + φ

⌋
< (b− a + 1)γ + 1,

where the terminal 1 accounts for the error that might result from the dele-
tion of the floors. For the number of 0’s in this interval we thus get

b− a + 1− (s + 1) >
s

γ
− (s + 1) =

s− α

α
≥ t− 1. �

4. Catching a (2 − ε)-King

In this section we develop a devil strategy to catch all kings of speed less
than 2. The following main theorem emerged from joint work with Attila
Pór.

10. Theorem. The devil can catch any α-king with α < 2.
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Have a look at Figure 7 again, where the devil pushed a 2-king along a
line of density 1/2. With every second square already in place, the 2-king
could never break through. We generalize this idea to kings of arbitrary
speed.

11. Definition. An infinite (s, t)-fence is an infinite horizontal or ver-
tical strip in the plane with some squares blocked such that when an (s, t)-
bounded king enters the strip from one side, the devil can play in a way that
prevents the king from leaving it on the other side. Formally, such a fence
is just a map F : Z × [1 .. w] → {0, 1}, where F−1(1) is the set of blocked
squares. The integer w is called the width of F .

We call such a fence periodic if there exists some integer λ such that
F (x, y) = F (x + λ, y) for all x ∈ Z. Call the minimal such λ the period of
F . In this case we also define the density of the fence, as the ratio

1
λ

∣∣{(x, y) | 1 ≤ x ≤ λ, 1 ≤ y ≤ w,F (x, y) = 1
}∣∣.

Note that density is measured with respect to length, not area. Width
is not the crucial quantity, it appears for merely technical reasons.

12. Lemma. Against an (s, t)-bounded king, s/t ≤ 2, there exists a pe-
riodic infinite fence of density 1− t/s and width 10s + 1.

Proof. We provide a periodic map F : Z × [1 .. 10s + 1] → {0, 1} with
the desired properties. Let F be everywhere zero except for those points
(x, y) with

0 ≤ x mod s < s− t and y = 5s + 1.

In other words, we group the central horizontal line y = 12+1 into segments
of s squares and place s−t blocks in each segment. See Figure 8. The density
of this pattern is obviously the claimed (s− t)/s.

s− t t

S−1 S0 S1

Figure 8. An infinite (s, t)-fence.

We now show how the devil keeps the king from crossing F by making
sure that he can never step on the central line. By symmetry we may assume
that the king enters the strip from the bottom.

Like in the case of the 2-king, we make sure that in the proximity of the
king the central line is always filled completely. Precisely, if the segment S0

above the king’s current position has already been filled completely and the
one to the left and right, S−1 and S1, too, then the devil acts as follows.
As soon as the king steps into the area below the segment S−1 to the left,
the devil uses his next t moves to fill up the segment S−2, further to the
left. By (s, t)-boundedness, this is finished before the king gets to play his
(s + 1)st move (counting the move that entered S−1 as the first). Hence,
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by that time the king must be somewhere below the segments S−1 and S0,
and because S−2 is now filled we are in the situation as before: the three
segments directly above the king are blocked. If the king started running to
the right, the devil would have filled the segment S2, of course. The devil
can iterate this recipe forever, never letting the king step on the central line.

To obtain the above configuration, we reuse the procedure for the 1-
king from section 1, where we managed to get a block of three consecutive
squares in the king’s way. Interpreting a whole segment Si as a single square
in which we must play t moves, we immediately see that 5 such meta moves
suffice to get three segments prepared. Since any sequence of t devil moves
yields no more than s king’s moves, this gives a total of 5s approach moves,
which is just the width of the strip below the central line. �

The devil cannot build infinite structures in finite time. Infinite fences
serve as a mere theoretical concept, which is easier to handle than finite
fences, whose existence can be easily derived from the infinite ones.

13. Definition. A finite (s, t)-fence is a rectangular box of size ` × w
in the plane with some squares blocked, such that when an (s, t)-bounded
king enters through one of the length-` sides he can only leave through that
side again and such that all squares along the two length-w sides blocked.
Formally, such a fence is a map F : [1 .. `] × [1 .. w] → {0, 1}, where F−1(1)
is the set of blocked squares. The integers ` and w are called the length
respectively width of F . The density of the fence is the ratio

1
`

∣∣{(x, y) | 1 ≤ x ≤ `, 1 ≤ y ≤ w,F (x, y) = 1
}∣∣.

The following lemma provides the trivial transformation of an infinite
fence into a finite fence.

14. Lemma. If there exists a periodic infinite (s, t)-fence of density σ
then there exist finite (s, t)-fences of the same width and of density no more
than

σ +
2w

`
for any length ` ≥ 1.

Proof. The basic idea is obv: we cut a length-` segment out of the
infinite fence S. We only face a little inconvenience. Unless the desired
length ` is a multiple of the period λ of S, our chosen segment might contain
more than the average density due to local inhomogeneities. This problem
is easily overcome by looking at a sequence of λ aligned length-` segments
of S. Since their total length is an exact multiple of λ, the total mass in
all of them is exactly σλ`. Now at least one of those segments contains no
more than the average σ` blocks. To turn this segment into a finite fence,
we have to fill the length-w sides up completely, which costs the additional
2w squares. �

Lemma 12 provides us with an infinite fence of density 1− t/s, which is
strictly smaller than 1/2 for an α-king with α < 2. This does not seem to
suffice to catch any such king, yet, but for α < 9/8 we already get a devil
win as follows. By Lemma 9 this speed bound grants us (s, t)-boundedness



4. CATCHING A (2− ε)-KING 15

with s/t < 9/8. So there exist infinite fences of density σ ≤ 1 − t/s < 1/9.
Choosing sufficiently long finite subfences of such an infinite strip, we can
make the additional cost of 2w/` in Lemma 14 arbitrarily small, so that it
gets absorbed by the small gap between σ and 1/9. Altogether there exist
finite (s, t)-fences of density at most 1/9. This is all we need against our
α-king. We simply build a square box of four such fences around him; in
such a way that these fences touch but don’t overlap. For a sidelength of `
this takes 4`/9 devil moves, which in turn yield less than 9/8 · 4`/9 = `/2
king’s moves. That means, all four fences will be finished by the time the
king reaches the boundary of the box. Hence, he will be caught.

In prospect of the proof of Theorem 10, we forgo more formal details of
this argument because the 9/8-king is covered by that result. The strategy
behind Theorem 10 starts of just like the 9/8 case, by obtaining some fence
of density below 1/2. The trick then is to assemble many such fences into
a huge new fence of slightly smaller density. Iterating this process, we will
eventually produce fences of arbitrarily small density. The key tool is the
following lemma, whose proof describes this construction. (Observe that the
bound (s/t)σ2 in this lemma is strictly less than σ, which means that the
density is really decreased.)

15. Lemma. If there exist finite (s, t)-fences, s/t ≤ 2, of any length
above some value `0, all of the same width w and with density bounded by a
common σ < 1/2, then there also exists a periodic infinite (s, t)-fence with
density below

s

t
σ2.

Proof. The basic idea is to assemble infinitely many identical vertical
finite density-σ fences to a wide horizontal fence of the desired density. As
the length ` of those finite fences we pick any multiple of s larger than `0 and
w. (Actually `0 should be much bigger than w anyway, but let us demand
` ≥ w here for the sake of rigor.) As the distance between those fences we
choose

m :=
⌊

t`

sσ

⌋
≥ `.

Let the width of the infinite fence L we want to construct be 7`, i.e.,

L : Z× [1 .. 7`] → {0, 1}.

Figure 9 shows how the vertical fences of length ` and width w are placed
in the central `-strip of L. Precisely, the region[

ν(w + m) + 1 .. ν(w + m) + w
]
×

[
3` + 1 .. 4`

]
forms a fence for each ν ∈ Z.

Before we start to play on L, let us compute its density. The period is
w + m and each segment of this length receives no more than σ` blocks, so
we can bound L’s density by

`σ

m + w
≤ `σ⌊

t`
sσ

⌋
+ 1

≤ s

t
σ2,

which is what we claimed.
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`

3`

3`

m w

Figure 9. Assembling many finite vertical fences into one
big infinite horizontal fence.

We turn to the more difficult part: showing that L is indeed an (s, t)-
fence. Assume the king enters L from the south, so we have to keep him
from reaching the upper border. The basic idea is to build a horizontal fence
between the upper ends of two vertical fences whenever the king runs north
between them. Such a horizontal fence will be of length m to make it fit
nicely in the gap. It will be placed in the rectangle[

ν(w + m) + w + 1 .. (ν + 1)(w + m)− 1
]
×

[
4` .. 4` + w − 1

]
for the respective ν ∈ Z. This arrangement is displayed in Figure 10 (the
shaded area between the fences will soon be addressed). Note the vertical
one-point overlap with the vertical fences on line 4`. To avoid confusion:
Those horizontal fences will be created dynamically by the devil when nec-
essary, they are not part of the original strip L when the king enters.

� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �

Figure 10. A horizontal fence between two vertical fences
and the shaded slot between them.

We now describe the essential aspect of the devil strategy starting from
a standard situation, postponing the matter how to reach that situation for
later. Therefore we give the shaded area between two vertical fences and
below the (potential) horizontal fence a name: call such a rectangle of the
form[

ν(w + m) + w + 1 .. (ν + 1)(w + m)− 1
]
×

[
1 .. 4`− 1

]
, ν ∈ Z,

a slot. We say that the king is in standard position if he is located within a
slot whose upper border is already closed with a horizontal fence or he sits
between two such blocked slots, perhaps within the vertical fence between
them.

Let us assume the king is in standard position. We claim that if he leaves
the slot then the devil can force him into standard position again by playing
as follows. When the king enters one of the three surrounding fences, he
follows the strategy of that respective fence to make sure that the king does
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not break through to the other side of that fence. Note that we use the fact
here that those fences do not overlap so that the devil is not forced to play
in two fences simultaneously. Since there are no gaps where the three fences
touch, this play guarantees that the king cannot leave the current slot above
line 3` without rebouncing from the fences.

If the king leaves the slot that way below, to the left, say, the devil starts
constructing the horizontal fence across the slot to the left. This takes no
more than

(3) mσ =
⌊

t`

sσ

⌋
σ ≤ t`

s

devil moves. During this time the devil completely ignores the king play. In
particular, he does not respond to the possible king’s crossing of any fences,
thus rendering them ineffective. Where can the king get while the devil is
off at work? By (s, t)-boundedness the king gets no more than s steps per
t devil moves. Counting the step out of the slot as the king’s first move,
we reckon that until the (` + 1)st king move, the devil has made at least
t`/s moves, i.e., the (` + 1)st king move comes after that many devil moves.
Since this figure is just what we have computed in (3), the king gets no more
than ` moves before the new fence is finished. Note that we used that ` is a
multiple of s when we applied (s, t)-boundedness.

A look back at Figure 9 reveals how far the king can have run in ` moves.
Since the first move lead strictly below the (3` + 1)st line, he cannot have
reached the (4` + 1)st line, where the horizontal fences start. Neither can
he have crossed completely the slot to the left, nor the original slot because
those areas are each m ≥ ` points wide. Consequently, the king ended up
somewhere inside the old slot or the new slot, which is fine because both
now have a fence above them, or he sits somewhere in between them. That
means he is in standard position again.

It remains to show how to reach a standard position from the initial
situation when the king enters the unmodified strip on line 1. The argument
is again very similar to the respective part of the strategy against the 1-king.
Here it is actually even simpler because we need only one horizontal fence
instead of a triple block. However, the notion of standard position requires
a little extra attention.

Call the slot in which the king’s first position lies S0, in case he enters
just between two slots, just pick any of them; and label the four neighboring
slots correspondingly S−2, S−1, S1, and S2, from left to right. The devil first
constructs the horizontal fence above slot S0. We already know from the
previous computation that such an endeavor grants the king at most ` steps.
So afterwards, the king sits in one of the slots S−1, S0, S1 or in one of the
two gaps between them. Inside S0 he is already in standard position. If he
sits in a gap, the one between S0 and S1, say, then the devil builds a fence
above S1, after which the king can only be in S0, S1 or the gap where he
already was before. So we have reached standard position. It remains to
consider a king in slot S−1 or S1 with S0 blocked; in S1, say, by symmetry.
Then the devil builds the fence above S2, squeezing the king between S0 and
S1. Blocking S1 with the next m moves, then leads into standard position.
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Altogether, the total number of devil moves is in no case larger than
3m, so that by the time we attain standard position, the king will not have
reached the (3` + 1)st line, yet. �

Proof of Theorem 10. Pick positive integers s and t with α ≤ s/t <
2, so that the α-king is (s, t)-bounded by Lemma 9. Then Lemma 12 provides
us with an infinite periodic (s, t)-fence of density σ < 1/2.

For an application of Lemma 15 we have to fix a suitable lower bound
`0 on the length of the finite fences we allow for the construction of the new
fence. Therefore we write s/t = 2/(1 + δ) with some, possible very small
δ > 0 and choose `0 large enough to ensure that the densitiy of the finite
fences longer than `0, as obtained by Lemma 14, is bounded through

σ +
2w

`0
≤
√

1 + δ σ.

Now Lemma 15 gives us an infinite (s, t)-fence of density

σ′ ≤ s

t

(
σ +

2w

`0

)2

≤ 2
1 + δ

(√
1 + δ σ

)2 = 2σ2.

Repeated application of this procedure yields a sequence σ0, σ1, σ2, . . .
with σn ≤ 2σ2

n−1 and σ0 < 1/2. The resulting bound

σn ≤ 1
2(2σ0)2

n

is easily verified, so that we see that the sequence (σn) converges to 0.
In a game against the α-king, the devil can now arrange four finite (s, t)-

fences of density smaller than 1/16, say, along the four sides of a huge square
around the king. With α bounded by 2, the devil builds such fences more
than 8 times faster than the α-king runs and thus finishes them before the
king reaches any of them. Hence, the king will never leave that big box. Note
that the fences have to be arranged in a non-overlapping way to ensure that
the devil can play in each of them independently. And maybe we should
also remark that the king cannot run around in his cage forever. After some
time, when the fences are filled to the rim with devil moves, the devil simply
starts flooding the central region with blocks until the king eventually gets
stuck. �

As the proof has shown, the 2 in Theorem 10 maxes out the potential
of our fences. We have already indicated in our discussion of the 2-king on
page 10 that a speed of 2 can be considered “fair” with respect to fence
building. If one used fences in the described way against faster kings, their
construction would be more expensive than the gain through the resulting
king’s detour. This can perhpas be seen as some very weak indication that
a (2 + ε)-king cannot be caught anymore, but fences could, of course, just
be one technical tool, without any deeper meaning for the game.

Anyway, since Conway’s article of 1996, there has apparently not been
any progress on the angel problem. Maybe Theorem 10 stimulates interest
in this game again, since the concept of α-kings allows for arbitrarily small
improvements in devil strategies. Perhaps we can learn something new about
our two antagonists from the voyages of very slow kings. Join the game!
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5. An Escape into Space

So we do not have any escape strategy for any k-angel in the plane.
Maybe we can obtain some positive result in higher dimensions, where an
escape should be potentially easier. And in fact we can. 3D-angels live in a
3-dimensional world of cubes, indexed by coordinates in Z3. Just like in the
plane, in every move the k-angel jumps from his current position (x, y, z) to
some other cube (x′, y′, z′) with |x′ − x|, |y′ − y|, |z′ − z| ≤ k, and in turn,
the devil blocks some cube of his choice. We prove the following.

16. Theorem. On the three-dimensional board, the 13-angel can escape
forever.

The problem at hand has only been mentioned once in the literature,
also in [8], where the authors actually report to know escape strategies for
angels in higher dimensions. However, a proof has apparently never been
published.

Theorem 16 should be seen in the proper light. It is not a breakthrough
on the way towards a solution of the two-dimensional case but rather con-
firms that the original question by Conway, Berlekamp, and Guy addresses
the right problem. Moreover, it will become clear that our solution, a
density-sensitive path-search method based on a hierarchical space parti-
tion, will not carry over to the two-dimensional game—not without major
modifications, at least. So we not only provide a first constructive escape
strategy for a variant of the angel problem but also want to point out the in-
trinsic obstacles for similar strategies in dimension two, to further emphasize
the hardness of the original angel problem.

The box hierarchy. Our escape strategy divides the world into an
infinite hierarchy of larger and larger boxes. The angel will have to make
sure that on each level, his current box contains not too many devil blocks.
This shall then guarantee his free travel.

A remark on terminology. Our usage of the word “cube” might get a
little confusing when we speak about our hierarchy, since higher-level boxes
will themselves be cubes—of cubes of cubes of cubes, etc. We shall use the
expression elementary cube to emphasize that we mean the basic locations
of the board, while the term box be reserved for collections of such objects.
With other expressions the intended meaning should in general be clear from
the context.

On the first level, the world is regularly partitioned into cubes of side-
length 13, such that the origin 0 ∈ Z3, where the angel starts, lies at the very
center of one of these boxes. Formally, the first level H1 is the collection of
all boxes

H
(u,v,w)
1 :=

{
(x, y, z) ∈ Z3 | 13u − 6 ≤ x ≤ 13u + 6,

13v − 6 ≤ y ≤ 13v + 6,

13w − 6 ≤ z ≤ 13w + 6
}
,

with u, v, w ∈ Z, where we reference elementary cubes of the world via their
coordinates (x, y, z) ∈ Z3.

The sidelength 13 corresponds to the power of the 13-angel. From level
2 on, sidelengths grow by a factor of 29 per step, where there is no deeper
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reason for the choice of this particular value except that it makes the forth-
coming computations work. On each level we again demand that the origin
lie at the very center of the one box that contains it. Technically, for j ≥ 2
the jth level Hj of our hierarchy is the collection of all boxes

H
(u,v,w)
j :=

{
H

(a,b,c)
j−1 | 29u − 14 ≤ a ≤ 29u + 14,

29v − 14 ≤ b ≤ 29v + 14,

29w − 14 ≤ c ≤ 29w + 14
}
,

with u, v, w ∈ Z.
So any box on level j ≥ 2 contains 293 boxes on level j − 1 and the

whole hierarchy is symmetric to the origin. Note that formally the elements
of a higher-level box are again boxes, which is what we want. But with a
certain laxness we shall also consider a level-j box simply as the set of the
(13 · 29j−1)3 elementary cubes that lie inside it. In this vein we define the
level-j box of a cube a ∈ Z3 to be the unique box in Hj that “contains” the
elementary cube a and denote it by

Qj(a).

Further we define a mass function µ for all boxes A on all levels of our
hierarchy, letting

µ(A)
count the number of elementary cubes inside A that have already been
blocked.

Clear roads ahead. Globally, the angel’s route through our hierarchy
of boxes will be guided by simple mass constraints, in a quite elegant way.
The basic step, the transition between two adjacent boxes, however, requires
some dirty work. We need to introduce a few technical notions to ensure that
locally the angel does not get stuck in unfortunate arrangements of blocks.
The ideas are similar to the invariant from the proof of Proposition 5 from
page 8.

17. Definition. Let E be a quadratic grid of 29× 29 cubes with some
cubes marked forbidden. We say that a cube a of E lies clear in E if

- no more than 12 of the 292 = 841 cubes in E are forbidden,
- a lies in the central 13 by 13 square of E,1 and
- the two axis-parallel lines through a in E contain no forbidden

points.
See the left-hand side of Figure 11.

Let C be a cubic grid of 29 × 29 × 29 cubes with some cubes marked
forbidden. We say that a cube a of C lies clear in C if

- no more than 333 of the the 293 = 24,389 cubes in C are forbidden
and

- a lies clear in one of the three axis-parallel 29× 29 planes through
a in C.

See the cube in Figure 11.

1The occurrence of the number 13 here is coincidental. This is a “different” 13 than
the one from Theorem 16.
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Figure 11. Clear positions.

The idea behind the above definitions is, as we said before, to guarantee
free navigation from a clear cube within a sidelength-29 box to somewhere
outside this box. A cube that lies clear will have enough free space around
it to guarantee an easy route out. The forbidden cubes may, of course,
not be used for travel. We do not speak of blocked cubes in Definition 17
because the little cubes will usually themselves be boxes of smaller cubes.
But forbidden cubes will almost be blocked, meaning that their mass exceeds
a certain threshold.

For paths through such boxes we allow axis parallel steps of unit dis-
tance only. That is, a single step of a path is a change of ±1 in just one
coordinate—in contrast to basic angel moves. This restriction is due to the
hierarchical structure of our argument. We will be able to travel between
two little cubes inside the big cube in Definition 17 only if these cubes share
a face which may be used for a transition on the next lower level.

From a purist’s point of view, the grids E and A of Definition 17 could, of
course, just be called grid graphs, with “cubes” replaced by “vertices.” Then
a path would just be a paths in the graph theoretic sense and the following
lemmas are in fact just statements about such grid graphs. However, we like
to keep with our view of cubes and boxes, hoping that this does not cause
any confusion.

The following lemma about planes only serves as a tool for the three-
dimensional case. Our actual interest will be in paths through boxes.

18. Lemma. Let q be a cube lying clear in a 29 × 29 grid E. Then at
least 763 = 292 − 78 cubes of E are reachable from q in at most 40 steps
each.

Proof. Any cube on the two lines through a is by assumption reachable
directly through that respective line. For every other point p ∈ E we con-
sider the two potential paths that run parallel to the axes with exactly one
turn. A cube p may not be reachable on either of these two paths for two
reasons: both paths are blocked or p is a forbidden cube itself. Since by the
special choice of our paths, a single pair of forbidden cubes covers at most
one cube of E, the first situation can happen for at most

(
12
2

)
= 66 cubes,

the second, by definition, for at most 12; which makes 78 inaccessible places
altogether. One easily computes that any of the remaining 292 − 78 = 763
cubes is reachable in at most 40 steps since the distance from any location
in the central region to any side of E is at most 20. �
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19. Lemma. Let q be a cube lying clear in a 29× 29× 29 box grid C and
let D be another 29× 29× 29 box aligned with C along one face of C, also
with no more than 333 points marked forbidden. Then there exists a cube r
lying clear in D such that there is a path of length at most 165 from q to r,
which after the first 96 steps uses no more cubes in C.

Proof. Let E denote the plane within C in which p lies clear as required
by Definition 17. The basic idea for the path construction is to pick a suitable
plane F in D, which will contain the target point r, and then to find many
disjoint paths from E to F not all of which can be blocked by forbidden
cubes.

Observe that by the pigeon-hole principle, among the 29 axis-parallel
planes in D that lie parallel to that face of D which borders on C, at least
one contains no more than 12 forbidden cubes (29 ·13 = 377 > 333). Choose
F to be such a plane. For both dimensions of F , at most 12 of the 13 axis-
parallel lines passing through the central 13× 13 region of F are blocked by
forbidden cubes, which leaves at least one clear line in each direction. We
choose b as the intersection of two such lines, which makes it lie clear in
D. We now distinguish two different cases: when the planes E and F are
parallel and when they are not.

First case: E parallel to F . Partition the union of C and D into the
292 = 841 disjoint lines that intersect E and F orthogonally. By Lemma 18,
all but 78 of these lines intersect F in cubes that are reachable from q in
at most 40 steps and likewise all but 78 lines intersect F in cubes that are
reachable in 40 steps from r. This leaves 841 − 2 · 78 = 685 lines whose
intersections with E and F are reachable in 40 steps from a respectively b.
By assumption, there are no more than 666 forbidden cubes in C and D
altogether, so several of those lines are completely free. Since the distance
between the planes E and F is bounded by twice the sidelength of the boxes
C and D, we get a path from q to r of no more than 2 · (40 + 29)− 1 = 137
steps.

The second case, where E and F are not parallel, can be treated simi-
larly. Only the connecting lines must be chosen in a more complicated way.
Partition the union of C and D into 29 parallel planes of size 29× 58 such
that each plane intersects E and F in exactly one line. Within each of these
planes we match the 29 cubes of C with the 29 cubes of D by 29 disjoint
paths as displayed in Figure 12. As in the first case, we thus get a positive
amount of paths connecting locations in E reachable from q to locations in
F reachable from r and free of forbidden cubes. The length bound is a little
worse, however. Paths in Figure 12 can require up to 28 + 29 + 28 = 85
steps, which together with the paths within the planes E and F yields an
upper bound of 165 steps from q to r. It is also easily checked that in either
configuration we spend no more than 96 steps inside C. �

We want to apply the box-travel lemma to boxes of our hierarchy (Hj).
Therefore we have to define which level-(j−1) subboxes inside a level-j box
should be considered forbidden. This shall, for now, depend on a simple
mass constraint. (Later we will also need a slightly modified definition.)
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F

E
DC

Figure 12. Traveling between non-parallel planes E and F .

20. Definition. Call a box A′ ∈ Hj−1, j ≥ 2, light if

(4) µ(A′) ≤ 17
3
· 165j−1

and heavy otherwise.2 We then say that the angel’s position a is nice on
level j if the subbox Qj−1(a) lies clear in Qj(a), with exactly the heavy
level-(j − 1) boxes forbidden. The position is nice on level 1 simply if

(5) µ
(
Q1(a)

)
≤ 1157.

We say that a position is nice up to level j if it is nice on all levels from 1
through j.

The notion of niceness will be suitable to guarantee an escape route out of
the current level-j box Qj(a). Recall that the constant 165 is exactly the step
bound provided by Lemma 19. Level 1 receives a special treatment because
it will be used in the induction basis, founding our hierarchy argument on
actual angel moves.

The main induction—escaping from larger and larger boxes.
With the notion of niceness at hand, it is actually rather straightforward
to formulate an appropriate induction hypothesis for angel strategies that
allow to travel between arbitrarily large boxes. Only a few constants remain
to be chosen thoroughly. And of course, we have to make some assumption
on the target box we want to run into. Actually, a simple mass constraint
will do.

21. Proposition. Let B be one of the six level-j boxes neighboring the
angel’s current box A ∈ Hj, j ≥ 1. If his current position is nice up to level
j and the mass of B is bounded by

(6) µ(B) ≤ 7 · 165j

then the 13-angel can get in no more than

(7) 2 · 165j−1

elementary moves from his actual position in A to some location in B such
that after he has arrived there, his position will be nice up to level j again.

2We prefer to write j − 1 instead of simply j to emphasize that although lightness is
a property of a single box, it shall always be used in reference to the containing box on
level j.
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Note that the coefficient 7 in (6) is slightly larger than the 17/3 in (4).
So for the box B in Proposition 21, we impose a weaker mass constraint than
would be required for being considered light as a subbox in the containing
box on level j + 1. We also remark that 165j lies somewhere in between the
sidelength of a level-j box and the number of points in a face of such a box.
One could say that with increasing level, the mass bound (6) grows strictly
faster than one-dimensional objects but strictly slower than two-dimensional
objects. Likewise the path length (7); compared to the diameter of a level-
j box, it gets arbitrarily large, hence, seen from a far distance, the angel
slows down to almost zero speed. Compared to surface growth, however,
and this is the crucial measure because potential devil obstacles must be
two-dimensional, the speed can actually be seen to increase by 292/165 > 5
per level.

Proof of Proposition 21. By induction on j. The induction basis
is j = 1. We have exactly 2 moves to get from the current sidelength-13
box A to an arbitrary elementary cube in B. By niceness, A contains at
most 1157 devil blocks and by (6), B contains no more than 7 · 165 = 1155
blocks. Thus, by the pigeon-hole principle, any 7 planes within the current
box A or the target box B contain at least 7 ·132−1157 = 26 free locations.
Hence, the 13-angel may jump from its current position a to some other
place in A at most 7 units away from B. From there he can reach in just
one further jump any point within the first 7 layers of B, which still contain
some unblocked cubes. He jumps to one of them with his second move. The
two devil answers cannot raise the mass of B over 1157, so afterwards the
position will be nice on level-1 again, as required.

Induction step from j − 1 to j ≥ 2. Niceness of the current position
a guarantees that there are at most 333 heavy subboxes A′ in A, all the
other boxes satisfying the lightness condition (4). In our target box B we
also mark forbidden subboxes, based however, on a slightly stronger mass
constraint. Mark a level-(j−1) subbox B′ in B forbidden if does not satisfy

(8) µ(B′) ≤ 11
3
· 165j−1.

So in B, non-forbidden subboxes are “ultra light.” Since 334 such forbidden
boxes in B would yield a total mass of

334 · 11
3
· 165j−1 > 7 · 165j ,

our assumption (6) implies that B contains no more than 333 forbidden
boxes.

Now there are two adjacent level-j boxes A and B with at most 666
level-(j − 1) subboxes forbidden altogether, based on two slightly different
criteria. By niceness on level j of the current position a, the box Qj−1(a)
lies clear within the box A = Qj(a). Further, the neighboring level-j box B
contains fewer than 333 forbidden boxes. Hence Lemma 19 applies to A and
B, giving a path (U0, U1, . . . , Ut) of level-(j − 1) boxes with t ≤ 165 from
the current box Qj−1(a) = U0 to some Ut that lies clear in B with respect
to the ultra-light boxes there. Moreover, the lemma guarantees that from
U97 on all boxes lie in B.



5. AN ESCAPE INTO SPACE 25

We use this path of boxes to obtain an actual strategy that gets the angel
from a to some point in Ut. Niceness up to level j at his starting position a
implies niceness up to level j − 1, so we apply our induction hypothesis on
level (j−1) to the pair U0, U1, getting the angel to a position within U1 that
is also nice up to level j−1 and from there to a nice position inside U2—and
so on, all the way to some b that is nice up to level j in Ut. However, this
will only work if the mass constraint (6) is satisfied for the target box Uτ in
each single transition between two adjacent boxes Uτ−1 and Uτ .

This is easily checked. The whole journey from a to b would grant the
devil at most

(9) 165 · 2 · 165j−2 = 2 · 165j−1

moves. Even if he spends all of them on a single box Uτ in B, the mass of
this box will remain bounded by

(10) µ(Uτ ) ≤
11
3
· 165j−1 + 2 · 165j−1 =

17
3
· 165j−1.

For a box Uτ in A we know that it cannot receive more than 95·2·165j−2 devil
moves before we want to enter it, so that by the time we invoke Lemma 19
the following mass bound will hold:

(11) µ(Uτ ) ≤
17
3
· 165j−1 + 95 · 2 · 165j−2 < 7 · 165j−1.

Both bounds, (10) and (11), satisfy the requirement (6) of Proposition 21
with j replaced by the appropriate level j− 1 there. Hence, all those transi-
tions between the Uτ will be possible. Also note that the number of moves
counted in (9) is exactly what we had to show for (7).

Eventually, the angel reaches a point b in Ut in the required number of
elementary moves such that by that time the resulting position is nice up to
level j−1. It remains to show niceness on level j. To see this, recall that the
relaxed mass bound for the originally ultra-light subboxes in B, which we
computed in (10), matches exactly our definition (4) of light boxes. Hence,
all subboxes B′ of B that are heavy after the angel’s trip from a to b, had
already been forbidden in the beginning when the box-travel lemma was
invoked, and thus the terminal box Ut lies clear in B with respect to those
boxes. In other words, b is nice on level j, too. �

Proposition 21 immediately implies the existence of an escape strategy.
But since the following argument uses Lemma 3, we do not get an explicit
strategy, yet.

Proof of Theorem 16 (non-constructive version). At the very
beginning of the game all boxes on all levels of our hierarchy are empty and
thus light within their respective containing boxes. Because of the symmetry
of the hierarchy with respect to the origin, the angel starts at the very center
of the box Qj(0) on every level j ≥ 1. Therefore, the starting position is
nice on every level j ≥ 1.

By Proposition 21 the angel can thus travel to some adjacent box on
any previously given level of the hierarchy, which allows him to escape the
devil for any previously chosen amount of time. So by Lemma 3, the angel
can escape forever. �
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An explicit infinite escape strategy. If someone really wants to play
the angel game for some infinite time, the previous, abstract proof is no big
help, telling us just that the angel can win—somehow. To obtain an explicit
escape strategy, we have to work a little harder and revisit some details of
the proof of Proposition 21.

Proof of Theorem 16 (constructive version). We start escape
strategies on all levels of the hierarchy simultaneously—in such a way that
on initial segments those strategies are compatible. Therefore we introduce
a small technical convention about the paths provided by Lemma 19.

Unrolling the induction in the proof of Proposition 21, we can interpret
that result as a concrete strategy for journeys between adjacent boxes of our
hierarchy, which on each level invokes Lemma 19 as an algorithm (implicitly
given by its proof) for path finding in grid graphs. In this algorithmic view,
let us agree that whenever Lemma 19 is invoked to find a path between two
boxes that contain no forbidden cubes at all, it returns a path that starts
with a step in the direction of the target box.

The angel begins by traveling from the origin 0 to a nice position a1

in the level-1 box B1 that lies directly behind (in positive z-direction, say)
the initial box Q1(0). Having arrived at position a1, we can now interpret
these first steps as the initial sequence of a travel from the box Q2(0) to
a nice position a2 in the level-1 box B2 just behind the initial level-2 box
Q2(0). As we already observed in the non-constructive proof above, such
a strategy exists by Proposition 21 and by our convention it would have
started with a travel to a position in B1, just as we did. We now follow the
new level-2 strategy until we reach the position a2. At that point, we again
interpret this journey as the initial sequence of a travel from the origin to
a nice position a3 in the level-3 box behind Q3(0). Iterating this argument
indefinitely, we obtain an infinite escape strategy for the angel. The crucial
argument here is that what we have done up to some point, will always fit
into strategies on higher levels that we have not considered yet. �

Why our hierarchy does not work in 2D. One might want to try
to transform the hierarchy approach for the three-dimensional case into an
escape strategy for the two-dimensional game. Such an attempt would face
two major obstacles. First, as we already remarked after the statement of
Proposition 21, the step bound (7) grows strictly faster than the sidelengths
of the boxes. This effect is due to the detours we are making with each
application of Lemma 19. On higher and higher levels, the effective speed
of the angel thus gets arbitrarily slow. In the plane, this would allow the
devil to completely encircle the angel on a sufficiently large scale since the
boundary of a rectangle is proportional to the radius. Hence, we would
need an improved path finder that might probably employ some means of
charging devil moves against angel moves such that devil plays that force
the angel to make detours cannot be counted for wall building far away.

But even if one should succeed in maintaining the “effective speed” of the
angel, there would remain a more fundamental problem about hierarchical
strategies like the one we presented. While routing out of a level-j rectangle
R (or whatever regular shape might be used), the angel must at some point
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decide which of the subrectangles on level j − 1 should be the last on the
way out. Then he will have to pass through the outward side S′ of this
subrectangle R′ at some time in the future. While the angel approaches R′,
the devil uses a certain number of his moves, proportional to the sidelength
of R′, to destroy points of S′ at some density. After the angel has entered
R′, he must then, as before, pick some subrectangle R′′ of R′ that should
be the last before he leaves R′ through S′ and thereby confine himself to
pass through its outward side S′′ ⊂ S′, shown in Figure 13. Again, the devil
uses a certain number of moves to increase the density on S′′ by the same
amount as on the previous level.

R′′

S′′ S′

R′

R

Figure 13. A boxed fool.

Repeated application of this scheme on sufficiently many levels eventu-
ally yields a completely blocked line through which the angel would have to
travel. The reader will have noticed that what we just sketched is simply
a hierarchical version of Conway’s fool theorem. The implication for hier-
archical approaches in the plane is clear: The different levels of an angel’s
hierarchy will have to interact in a considerably more sophisticated way than
is sufficient for an escape in space.





CHAPTER 2

Weak Positional Games

1. Tic-Tac-Toe

Let H = (V,E) be a hypergraph, that is, V = V (H) is a finite set and
E = E(H) is a set of subsets of V . The elements of V are called the vertices
of H and the sets in E are the edges of H. Two players, called Maker
and Breaker, play the following game on H. Maker begins by picking some
vertex of H, then Breaker chooses some different vertex. They alternate
in this fashion until all vertices of H are taken, retaking of vertices being
forbidden. Maker wins if he manages to claim all vertices of some edge
e ∈ E, otherwise Breaker wins.

Note the obvious unfairness, or rather asymmetry in the game. Breaker
does not win by getting a complete edge as Maker does. His moves are only
meant to block vertices and make the incident edges useless for Maker. Also
observe that by definition, there cannot be a draw.

Such a game is called a weak positional game on the hypergraph H. The
term positional game goes back to Hales and Jewett [19] where a variant
of such games were first studied. The attribute “weak” has been coined
later to distinguish them from the so-called “strong” games which we shall
address soon. Briefly, “weak” accounts for the fact that Breaker does not
win when he claims an edge e ∈ E himself.

The relevant question about a game on a fixed hypergraph is, of course,
who can win. That is, does Maker or Breaker have a strategy that always
wins. Formally, a strategy is a mapping σ from finite sequences (x1, x2, . . . ,
xr) of distinct vertices of H to V (H) \ {x1, x2, . . . , xr}, where r < |V (H)|.
The obvious semantic being that the xi describe the course of play up to
some point and then σ determines the next move. So in case of a Maker
strategy σ is only defined for sequences of even length and only for sequences
of odd length in case of Breaker strategies.

A winning strategy is a strategy that wins against all possible opponent
plays. A fundamental theorem of combinatorial game theory tells us that
either one of the two players must have such a winning strategy (games
with this property are called determined) draw being impossible by the very
definition of the game. This is easily shown by a simple game-tree backward-
labeling argument, as described in many books on combinatorial games.
The essential ingredient here is the finiteness of the game. See Section 2 of
Chapter 1 for a brief discussion of some aspects of non-determined games.

Winning strategies for Maker will sometimes be called making strategies
and such for Breaker breaking strategies. In our arguments, we usually like to
consider a game out the perspective of Maker, which suggests the following
convention.

29
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1. Definition. A hypergraph H is a winner if Maker, playing first, has
a winning strategy on H, otherwise, when Breaker has a winning strategy,
we call it a loser.

In this work, our main motivation to study positional games is the com-
putational complexity of the question whether a given hypergraph is a win-
ner. Note that an efficient decision procedure for this question would imme-
diately yield winning strategies on any winner by a standard reduction. At
each move, we could simply determine the value of the outcomes of all our
options together with all possible opponent plays. From this we would then
be able to tell which moves are the best.

However, a polynomial-time algorithm for arbitrary hypergraphs should
not be hoped for. Schaefer [39] showed that this problem is PSPACE-
complete, which is “the right” class for a two-person game. The paper
does not use the term hypergraph, though, but works with games on DNF
formulas, which behave equivalently. Thanks to Jesper Makholm Byskov
for pointing me at that result.

We will focus on hypergraphs with edges of bounded size.

2. Definition. The rank of a hypergraph is the size of a largest edge.
A hypergraph is called k-uniform if all its edges are of size k.

Hypergraphs of rank 2 are not very interesting from the point of posi-
tional games. Any edge of size 1 yields an immediate Maker win, so we may
assume that the hypergraph is 2-uniform, i.e., an ordinary simple graph. If
such a hypergraph has any vertex of degree greater than one, i.e., if any two
edges share a vertex, Maker wins by playing at such a vertex because in his
next move he will complete either of the two edges since Breaker can only
play in one of them. On the other hand, Schaefer’s proof requires no edges
larger than 11, so that the decision problem is already PSPACE-complete for
hypergraphs of rank 11.

In this interval, between 2 and 11, the smallest interesting rank is 3. We
set out to distinguish rank-3 winners from rank-3 losers efficiently, i.e., in
polynomial time. Unfortunately, we do not succeed completely. There is a
problem with too-much-overlapping edges. We shall solve the task only for
hypergraphs with the following additional property.

3. Definition. A hypergraph is almost-disjoint if no two edges intersect
in more than one vertex.

4. Theorem. The question whether a given almost-disjoint hypergraph
of rank-3 is a winner or a loser can be decided in polynomial time.

Theorem 4 is not about efficient algorithms. Our motivation is not the
desire to actually play such games better, like with chess, but to understand
the underlying principles which let you win or lose on a hypergraph. The
above result rests on a classification of rank-3 hypergraphs into winners and
losers, which is somehow the more important result. That classification
(Theorem 38) depends on several notions that first need to be developed, so
that we must defer its statement to a later place, where the actual work is
done.
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It might be suspected that by restricting ourselves to almost-disjoint
hypergraphs, we have defined away the essential part of the problem. This
is not the case. Our investigation of almost-disjoint hypergraphs exhibits a
lot of structure and the techniques we employ during the analysis reveal some
of the deeper mechanics behind such games. Moreover, we shall give some
evidence that the almost-disjointness condition can be removed through a
preprocessing step, so that our result could be immediately applied to all
rank-3 hypergraphs without further modifications in the proof.

Strong games. Positional games can be seen as the natural generaliza-
tion of the well-known game Tic-Tac-Toe, which is played by two players on
a board of 3× 3 = 9 squares. Alternately the opponents claim squares, the
first player by drawing crosses the second by drawing noughts; reclaiming of
previously taken squares being forbidden. Either player wins if he manages
to get three squares in a row, horizontally, vertically, or on one of the two
diagonals. Figure 1 shows a game in progress.

Figure 1. A game of Tic-Tac-Toe.

Note the obvious difference to weak positional games. In Tic-Tac-Toe
the second player also tries to complete an edge of his own. In some sense,
the game now seems fairer.

The natural generalization of this symmetric rule system to arbitrary
hypergraphs H = (V,E) leads to the definition of a strong positional game.
Two players, not called Maker or Breaker now, alternately claim vertices in
V until either one player has claimed all vertices of some edge e ∈ E, in
which case he wins, or all vertices are claimed and neither player achieved
this goal, in which case the game is a draw. The term “strong” will soon
become clear when we relate these games to weak games.

The difference between weak and strong games already bears on the
simple example of Tic-Tac-Toe. While every child knows that it is a draw
in the strong version, Maker can win on the 3× 3 board in the weak game
because in certain situations Breaker lacks counter threats.

Due to the changed game definition we get a new type of strategy. A
drawing strategy is a strategy that always leads to at least a draw, i.e., if you
follow this strategy you can be sure not to lose and it may happen that you
win. Similar to the case of weak games, a simple game-tree argument shows
that either one of the two players has a winning strategy or both players
have drawing strategies. A special feature of strong positional games is that
this trichotomy (first player win, second player win, and draw) collapses
to only two cases. The second player cannot win, as can be seen by the
following well-known strategy-stealing argument. Assume for contradiction
that the second player has a winning strategy. Then the first player can
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“steal” this strategy by playing his first move anywhere and then behaving
as if he was the second player. The point is that the additional first move
does not create any problems for the first player because of the monotonicity
of the game. If the strategy prompts him to play a vertex he has already
taken, he can just play this move anywhere else and still have all vertices
taken that the strategy requires. Having more vertices claimed is never a
disadvantage.

So, strong games, if played optimally, also have just two different possible
outcomes: first player win or draw. The following trivial statement relates
weak and strong games in terms of winning strategies, justifying the pair
“weak”/“strong.”

5. Remark. If the first player can win the strong game on a hypergraph
H, Maker can win the weak game on H. If Breaker can win the weak game
on a hypergraph H, the second player can force a draw in the strong game.

So, taking Maker’s respectively the first player’s perspective again, being
able to win a strong game is really a stronger statement than being able
to win the corresponding weak game. Beck’s survey paper [7] contains
a detailed discussion of the relation between weak and strong positional
games.

Previous Results. A main branch of research about positional games
aims at the development of strong criteria for the existence of winning strate-
gies, often in terms of the number of edges and vertices, like the following
early result by Erdös and Selfridge [15].

6. Theorem (Erdös-Selfridge). Let H = (V,E) be an n-uniform hyper-
graph. If |E| < 2n−1 then Breaker wins the weak game on H and thus the
second player can draw in the strong game.

Beck [4, 5] has developed a variety of strong conditions of this kind. We
refer to his extensive overview [7].

Sometimes hypergraphs are investigated that are implicitly defined by
certain regular structures. For example, in [20] and [6] the two players pick
edges from a complete graph and try to obtain a subgraph of a certain pre-
scribed type. Another famous class of hypergraphs are generalized Tic-Tac-
Toe boards, where the vertex set is the nd grid cube {1, . . . , n}d embedded in
d-space with exactly all collinear n-sets as edges. These games have already
been studied in Hales and Jewett’s original paper [19]. Berlekamp, Conway,
and Guy’s classic [8] contains a whole chapter about some sorts of positional
games, like five-in-a-row on a checker board and games with polyominoes.
It also contains a detailed case analysis of the original 3 by 3 Tic-Tac-Toe.

Eventually, we should mention that also strong positional games are
PSPACE-complete. Reisch [37] showed this for the special case of the board
game Gomoku (five-in-a-row in the plane).

Our approach to positional games very much differs from most of the
above in that it aims at optimal play for a limited class of hypergraphs.
While density arguments like Theorem 6 usually give winning or losing cri-
teria for much larger classes of games than the one we attempt to solve,
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they cannot give definite answers how to play on any arbitrary given in-
stance. Usually the gap between the best winning criterion and the best
losing criterion is rather large, leaving a lot of difficult instances unresolved.

The price we must pay for our desire for a complete analysis, are several
lengthy case distinctions and sometimes a certain lack of beauty. Quite in
contrast to the nice density theorems of [19] and [15]. Though we introduce
tools to break hypergraphs into nice components, it cannot be avoided that
eventually some dirty parts have to be sorted out by direct inspection. The
ultimate result however, will be rather concise, a neat classification into
winners and losers.

2. Winning Ways

Before we embark on the analysis of rank-3 games, let us briefly discuss a
few very basic concepts and fix some related terminology. Consider a single
move of Breaker at some vertex y. Clearly, all edges of H that contain this
vertex will be of no use for Maker any more because he is not allowed to ever
recolor y. So we may interpret Breaker’s move as deleting the vertex y and
all incident edges f 3 y from H. On the other hand, a Maker move at some
vertex x brings Maker one step closer to his goal in each edge that contains
x. His move can be understood as shrinking all edges e 3 x by the vertex x,
i.e., deleting x from V (H) and replacing each such e by e′ = e \ {x}. In this
interpretation, Maker wins iff he manages to produce an empty edge. Note
how this point of view captures the inherent asymmetry of the game and it
is very useful to analyze hypergraphs in which some vertices have already
been played by any of the two players. We let

(12) H [+x1,...,+xr,−y1,...,−ys]

denote the hypergraph obtained from H by “shrinking away” the Maker ver-
tices x1, . . . , xr and deleting all edges containing any of the Breaker vertices
y1, . . . , ys in the above fashion. We shall also use obvious abbreviations of
this expression like H [+M ] with M = {x1, . . . , xr} a set of Maker moves.

Formally, there is no need for the numbers r and s in (12) to be related
in any way. We can have, for example, a large number of Maker plays in H
but no Breaker moves at all. This expression will still make sense. Hence,
our notation can be used to describe the course of play on local fragments of
a hypergraph, where the players not necessarily play in alternating fashion.
In other words, we can treat tenuki—moves that do not directly answer
the opponents preceding move locally but shift play to another part of the
graph.1 Second, the resulting hypergraph is clearly independent of the order
of deletion and shrinking steps. This is convenient for analyzing snap shots
of a game without bothering about the precise order of moves that lead to
an actual position.

Playing along paths. We start our investigation of rank-3 hyper-
graphs by collecting some elementary, though important criteria that guar-
antee a Maker win. The crucial objects are paths.

1In the Asian board game Go, a move that stays away from a local fight is called
tenuki.
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7. Definition. A walk (from a vertex v0 to another vertex vr) in a
hypergraph is a sequence W = (v0, e1, v1, . . . , er, vr), r ≥ 0, of vertices vi

and edges ei, such that vi−1, vi ∈ ei for 1 ≤ i ≤ r. The index r is the length
of the walk and we call v0 and vr the start and end vertex of the walk,
respectively.

A walk is a path if all vertices vi are distinct and ei ∩ ej = ∅ for all pairs
of indices i, j with |i− j| > 1. A cycle in a hypergraph is a walk of strictly
positive length from a vertex to itself, satisfying all requirements of a path
except that, of course, e1 ∩ er must not be empty.

We shall often treat a path or cycle W itself as a hypergraph by letting
V (W ) = {v0, . . . , vr} ∪ e1 ∪ · · · ∪ er and E(W ) = {e1, . . . , er}. As usual,
we say that two vertices of a hypergraph are connected if there is a walk
between them, and a hypergraph is connected if any two of its vertices are.

In contrast to simple graphs, one might come up with alternative defi-
nitions for the concept of paths in hypergraphs. We just chose the one that
will best serve our purposes. Though the following two notions are abso-
lutely standard and should not bear any ambiguities, we like to provide a
rigorous definition.

8. Definition. A subhypergraph of a hypergraph H is another hyper-
graph K with V (K) ⊆ V (H) and E(K) ⊆ E(H). The induced subhy-
pergraph on a vertex set W ⊆ V (H) of a hypergraph H is defined as the
hypergraph H[W ] :=

(
W, {e ∈ E(H) | e ⊆ W}

)
.

If a and b are vertices of a path, we write aPb for the unique subpath
of P from a to b. We often stack several such subpaths of different paths
to obtain a single long path. For example, if a and b are vertices of paths
P and Q, respectively, and P and Q intersect in some other vertex x, then
we write aPxQb for the path from a to b in P ∪ Q via x. Of course, we
then have to check that the resulting walk is a path again but in most cases
this will be obvious. When the path we want to use consists of only one
edge, f = {a, b, x}, for example, we sometimes simply write afb. We also
use constructs like aPxQa to create a cycle from two paths that intersect in
two vertices a and x.

The following lemma is rather trivial, but as we already emphasized,
paths in hypergraphs require a slightly more careful treatment than paths
in simple graphs. So we like to give a rigorous proof here to make sure not
to overlook any details and to comply with our definitions.

9. Lemma. If two vertices a, b in a hypergraph are connected then there
exists a path from a to b.

Proof. We claim that any shortest walk (v0, e1, v1, . . . , er, vr) from a
to b is actually a path. Otherwise there would be two edges ei, ej with
i < j−1, such that the intersection ei∩ej contains some vertex x. But then
the sequence (v0, e1, . . . , ei, x, ej , . . . , er, vr) is a shorter walk from a to b; a
contradiction. �

Figure 2 shows a path of length 7 with five 3-edges in the interior and
a 2-edge at each end. Assume that Maker plays at x1. Then Breaker must
clearly answer at y1. After that, Maker x2 leaves only Breaker y2 and then,
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Maker x3 forces Breaker y3. And so on. Maker can play all the way down
to x6, where he wins because Breaker will have to answer x6 at y6, leaving
the singleton edge {x7} for Maker.

y2

y1

x1 x2 x3 x4 x5 x6

y3 y4 y5 y6

x7

Figure 2. A winning path.

This scheme only works because any two adjacent edges of the path
intersect in just one vertex. The hypergraph in Figure 3 is a loser. If Maker
tries the same trick there, he gets stuck in the middle because after Maker
x4 there, Breaker y4 will destroy his options for the right side. However, if
the hypergraph at hand is almost disjoint then all paths are nice.

y2

y1

x1 x2

y3

x3

y4

x4

Figure 3. A non-almost-disjoint losing path.

10. Lemma. An almost-disjoint rank-3 hypergraph that has a path con-
taining two 2-edges is a winner.

Proof. We may assume that the path contains exactly two 2-edges and
that these are in the two terminal positions by simply removing further 2-
edges and trailing 3-edges. So we have a path (v0, e1, v1, . . . , er, vr) where
e1 and er are 2-edges and the other ei are 3-edges. Maker wins by playing
along this paths as described above. �

Combining Lemmas 9 and 10 we get the following useful win criterion.

11. Corollary. Any connected almost-disjoint rank-3 hypergraph with
at least two 2-edges is a winner. �

During the analysis of a game in progress, it will often be useful to have
the following variant of Lemma 10 available, which tells us how Breaker has
to reply to a Maker move in a component with a 2-edge.

12. Lemma. Let P be a path in an almost-disjoint rank-3 hypergraph
and assume that P contains a 2-edge. If Maker plays somewhere in P then
Breaker must answer somewhere in P , too; otherwise Maker wins.

Proof. If Maker plays inside the 2-edge the statement is trivial. Oth-
erwise, Maker creates an additional new 2-edge that lies on a common path
with the original 2-edge. By Lemma 10, Breaker must answer on this sub-
path of the original path. �
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Inner and outer vertices. Let us have a closer look at that carbon
molecule in Figure 2 again. The vertices that Maker played there shall be
of general importance for us.

13. Definition. Let P be a path or a cycle. A vertex of P that appears
in more than one edge is called an inner vertex of P ; the other vertices are
the outer vertices of P .

The way Maker won in Figure 2 was not unique. It is not hard to see—
though we won’t prove this now—that he could have started at any of the
inner vertices and still have won, while the outer vertices would have all
lead to a loss. The reason for this is in a way to be found in the following
absolutely trivial, yet important fact.

14. Remark. If x is an inner vertex on an almost-disjoint path P from a
to b then the subpaths xPa and xPb only intersect in the vertex x. Similarly,
if Maker plays at an inner vertex of an almost-disjoint cycle, this cycle is
split into a path.

Note that outer vertices do not have this property. The following two
lemmas, which will be useful in many situations, exploit the above observa-
tion for cycles.

15. Lemma. Let C be a cycle in an almost-disjoint rank-3 hypergraph.
If Maker plays at an inner vertex of C then Breaker must answer somewhere
in C, too; otherwise Maker wins.

Proof. Playing at an inner vertex, Maker turns the cycle into a path
with a 2-edge at each end, which by Lemma 10 is a winner. See the left-hand
side of Figure 4. �

Figure 4. Playing an inner vertex of a 3-uniform cycle yields
a path with two 2-edges (left), playing an outer vertex yields
a cycle with a 2-edge (right).

Of course, it is crucial again to pick an inner vertex. Playing an outer
vertex of a cycle yields just a cycle with a 2-edge, as shown on the right-hand
side of Figure 4. If Maker then plays in such a cycle again, Breaker has only
few options left.

16. Lemma. Let C be a cycle in an almost-disjoint rank-3 hypergraph
and assume that C contains exactly one 2-edge. If Maker plays at an inner
vertex of C then Breaker must answer in the 2-edge; otherwise Maker wins.
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Proof. If Maker plays in the 2-edge, the statement is trivial. Otherwise,
his move, which breaks up the cycle into a path, creates two 2-edges. This
leaves a path with three 2-edges altogether. If Breaker does not play in the
original 2-edge now, which is clearly the middle one, he leaves behind two
2-edges connected by a path. A win, by Lemma 10. �

3. Decomposing Hypergraphs

The last two lemmas from the previous section demonstrated the poten-
tial of cycles for Maker. With a single move at an inner vertex of a cycle
he could create an immediate threat. A key tool for our analysis of hyper-
graph games will be a decomposition lemma that allows us to reduce any
hypergraph into parts that are doubly connected in a certain way. In those
parts we will then have good chances to find cycles that yield several Maker
threats, allowing us to construct winning strategies for Maker.

We start with a simple observation about disconnected hypergraphs. For
two hypergraphs H1 and H2, their union H = H1 ∪H2 is given simply by
V (H) = V (H1) ∪ V (H2) and E(H) = E(H1) ∪ E(H2). In case of disjoint
vertex sets V (H1) and V (H2) this yields a disconnected union H = H1 ∪̇H2.
It appears plausible that in such a case, moves played in one component
should not interfere with those played somewhere else. Let us formalize this
intuition.

17. Lemma. The disjoint union H = A ∪̇ B of two hypergraphs A and
B is a winner iff at least one of A and B is a winner.

Proof. If A or B is a winner then clearly H is. So assume that neither
A nor B can be won. So there are breaking strategies α and β for A and B,
respectively. Against any Maker strategy, Breaker can use these to obtain a
breaking strategy for H. Whenever Maker plays in A he answers according
to α, when Maker plays in B Breaker follows β, at each move always ignoring
anything that happened in the other component. This way Breaker can
assure that in none of the two components Maker can get a monochromatic
edge. Thus, H is a loser. �

Lemma 17 tells us that if Maker can win on some hypergraph H he only
needs one component of H, never playing in the rest of H. And of course,
this rule can be applied recursively to any stage of the game: Maker never
needs to leave a component he once played in.

Splitting at articulations. Lemma 17 is not very deep. But it paves
the way for a stronger result that will become a vital tool for our analysis
of games on rank-3 hypergraphs. Suppose that the components A and B of
H are not completely disjoint but almost, i.e., they share just one vertex.
Then we can still relate the winning and losing behavior of A and B to that
of H.

18. Definition. We call a vertex p an articulation vertex of a connected
hypergraph H if H can be written as a union H = A ∪B of two nontrivial
hypergraphs A and B with V (A) ∩ V (B) = {p}.
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The left hypergraph in Figure 5 has exactly one articulation vertex, the
square one. The central vertex in the hypergraph on the right is not an
articulation.

Figure 5. A hypergraph with an articulation vertex (left)
and one without (right).

19. Lemma (Articulation Lemma). Let H = A ∪ B be the union of
two hypergraphs A and B which have exactly one point p in common, i.e.,
V (A)∩V (B) = {p}. Then H is a winner if and only if one of the following
holds:

- A is a winner,
- B is a winner,
- A[+p] and B[+p] are both winners.

Proof. First note that every single one of the three cases implies a win
for H. For the first two this is clear. If the last case holds, Maker can win
by playing his first move at p. This leaves two disjoint graphs both of which
he can win. Breaker cannot answer in both, so at his second move, one of
A[+p] and B[+p] will still be available to Maker and give him a win.

For the converse implication consider the case that none of the three
options in the statement of the lemma is true. By symmetry we may assume
that B[+p] is a loser. So we have breaking strategies α and β for A and
B[+p], respectively. Breaker combines these strategies as follows. Against
any Maker move in A he also answers in A, according to his strategy α.
When Maker plays in B \ {p} he answers there, following to strategy β.
This way Maker can never complete one edge of H since the edges of A are
taken care of by α and the strategy β guarantees that even if Maker should
get the vertex p, it won’t help him on B because not only B but even B[+p]

was a loser. �

Note that we had to require the nontriviality and connectivity condition
in the definition of an articulation vertex for technical reasons. (Otherwise
every vertex would be an articulation.) Lemma 19 does obviously not depend
on such restrictions.

Figure 5 indicates that in contrast to simple graphs, hypergraphs allow
different notions of connectivity. If we removed the central vertex from the
right hypergraph in that picture together with all incident edges, we would
of course decompose the hypergraph into disjoint components. But that is
not what we want because the Articulation Lemma does not apply to that
hypergraph. The “right” notion of connectivity for us is the following.

20. Definition. A hypergraph H with at least k vertices is Maker-k-
connected if its reduction H [+M ] is connected for every set M ⊆ V (H) of
Maker moves that has cardinality strictly less than k.
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Practically, Maker-k-connectivity means that Maker would have to play
at least k times until the hypergraph decomposes. Note also that Maker-1-
connectivity is equivalent to ordinary connectivity because then M = ∅ is
the only allowed set of Maker moves. We refrain from defining the analog
concept of “Breaker-connectivity” since we shall not need it anyway.

21. Lemma. A hypergraph H with at least k vertices is Maker-k-connected
iff it cannot be written as a union H = A∪B with V (A), V (B) 6= V (H) and
|V (A) ∩ V (B)| < k.

The crucial property here is, of course, that the hypergraphs A and B
do not overlap on k vertices, the other restriction only makes sure that the
decomposition is nontrivial in the sense that A and B are both really needed
in the union.

Proof of Lemma 21. Assume that we have such a representation H =
A ∪ B. Taking M = V (A) ∩ V (B) immediately gives us a Maker set such
that H [+M ] is disconnected. Conversely, assume that there exists a set
M ⊂ V (H) of cardinality ` < k such that the reduced hypergraph H [+M ] is
disconnected, i.e., H [+M ] = A′ ∪̇ B′. This decomposition tells us that any
H-edge lies completely in V (A′)∪M or V (B′)∪M . Therefore, we can write
H as the union H = H [−V (B)]∪H [−V (A)], where the two vertex sets intersect
in the set M which has cardinality ` < k. �

22. Corollary. A hypergraph with at least two vertices is Maker-2-
connected iff it is connected and contains no articulation vertex. �

Path decompositions. Through repeated application of Lemmas 17
and 19 we will reduce statements about general hypergraphs to such about
Maker-2-connected hypergraphs. Those are then amenable to the follow-
ing path-adjoining lemma, which is very much redolent of classical ear-
decomposition theorems. Here, however, it appears in a slightly technical
guise, due to the special requirements of our analysis in the subsequent
sections.

23. Lemma. Let H be a rank-3 Maker-2-connected hypergraph and let
(B,M, T ), with ∅ 6= B,M, T ( V (H), be a nontrivial partition of the vertices
of H such that no vertex in B is adjacent to a vertex in T . In other words,
the “middle layer” separates “bottom” from “top.” Then there exists a path
in H[M ∪ T ] connecting two distinct vertices a and b in M and using no
further vertices in M and no edges of H[M ].

In one sentence, Lemma 23 tells us that if we step from the middle layer
into the top layer then we find a path through T that brings us back to M .

Have a look at Figure 6. In the typical application of Lemma 23, the
middle layer M will be a part of a hypergraph H that we are currently
reconstructing and about which we already know a lot of structure, while the
top layer T contains the unexplored parts of H that are somehow connected
to M . The lemma then tells us that we can extend M into T path by path
in a regular fashion. The lower layer B contains all the remaining vertices
that are of no interest for the local situation.



40 2. WEAK POSITIONAL GAMES

T

M

B

a b

Figure 6. Finding paths with Lemma 23.

Proof of Lemma 23. Pick a connected component C of the hyper-
graph H[M ∪ T ]−E(H[M ]) (i.e., the subhypergraph induced by the vertex
set M ∪ T without those edges that lie entirely in M) that contains at least
one vertex in T . For example, in Figure 6, the path from a to b through
T would be such a component C. The intersection X = V (C) ∩ M has
cardinality at least two because H is Maker-2-connected. (C [+X] contains
no vertex in M , so it is disconnected from B by assumption; therefore, the
hypergraph H [+X] itself is disconnected and thus, X ≥ 2.)

For each pair u, v of distinct vertices from X, pick a shortest path Pu,v

from u to v in C. Such paths exist by Lemma 9. Amongst all these paths
(for all possible pairs u, v) pick one, Pa,b, say, of minimal length. We claim
that this is a path as required by the statement of the lemma. Assume for
contradiction that Pa,b contains more vertices in M than only a and b, some
additional vertex c, say. The three vertices a, b, c cannot lie in the same edge
of C because then they would form an induced edge of H[M ] which we had
excluded. Consequently, one of the paths Pa,c and Pc,b must be shorter than
Pa,b—a contradiction to minimality. �

Creating a 2-edge. In Section 2 we emphasized that in a rank-3 hy-
pergraph, 2-edges are good for Maker. Already two of them lead to a win if
the hypergraph is almost disjoint, by Corollary 11. In this section we show
how to reduce the problem whether a 3-uniform hypergraph is a winner, to
the question whether a rank-3 hypergraph with a 2-edge is a winner. Those
will then be easier to analyze.

24. Lemma. Let H be a 3-uniform hypergraph that is a winner. Then
there exists a Maker move x such that for any Breaker answer y, the hyper-
graph H [+x,−y] has a connected component that contains a 2-edge and is a
winner.

Proof. By induction on the size of H. Take the first move x from any
making strategy for H. Assume for contradiction that for some Breaker
answer y the hypergraph H ′ = H [+x,−y] has no connected component that
is a winner with a 2-edge. By Lemma 17, H ′ must have a component W
that is a winner and by assumption, W contains only 3-edges. But such a W
is actually a proper subhypergraph of H, so by induction there is a Maker
move x̂ ∈ V (W ) such that for every Breaker answer ŷ ∈ V (W ) \ {x̂} the
remainder W [+x̂,−ŷ] has a winning component that contains a 2-edge. Since
W was a subgraph of H, we can use x̂ as the first Maker move in H as well
and this will then guarantee a winning component with a 2-edge after any
Breaker answer. �
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One could easily generalize the proof of Lemma 24 to show that Maker
can actually win by always playing inside a component that contains at least
one 2-edge, except for his first and last move, of course. But all we need here
is a 2-edge after the first move as guaranteed by Lemma 24 because it gives
us the following reduction from a 3-uniform hypergraph H to hypergraphs
with at least one 2-edge.

For each pair x, y of first Maker and Breaker moves, check whether
among those components of H [+x,−y] that contain a 2-edge there is at least
one winner. If for some x this is the case for all possible answers y then H
is a winner, otherwise it’s a loser.

Once we have a 2-edge, we use the Articulation Lemma to cut our hy-
pergraph recursively at articulation vertices, so that eventually we will be
left with Maker-2-connected hypergraphs only. Having created a 2-edge is
really important for this step. In the proof of the subsequent lemma, the
presence of the 2-edge eliminates one alternative in the Articulation Lemma,
giving us sufficient information to avoid a possible combinatorial explosion
during the decomposition process.

25. Lemma. Let H be an almost-disjoint connected rank-3 hypergraph
with exactly one 2-edge f . Let H = A ∪ B be a decomposition of H with
V (A) ∩ V (B) = {p} for some articulation vertex p, such that f lies in A.
Let B1, . . . , Br be the connected components of the hypergraph B[+p]. Then
each of the connected hypergraphs A,B1, . . . , Br contains at least one 2-edge,
and H is a winner iff at least one of them is a winner.

Proof. Since H was connected, each of the Bi has at least one edge
that contained the deleted vertex p in H. Hence, those edges are 2-edges.
Clearly A is connected simply because H is and it contains a 2-edge by
assumption.

For the stated equivalence, first observe that the preconditions alone
imply that A[+p] is a winner: if p ∈ f then because A[+p] contains a 1-edge
and otherwise because A[+p] has at least two 2-edges. Now the Articulation
Lemma tells us that H is a winner iff one of A and B[+p] is. (Since A[+p] is
a winner, the third case of the Articulation Lemma reduces to “B[+p] is a
winner,” which makes the second case obsolete.) And by Lemma 17, B[+p]

is a winner iff one of the Bi is. �

We use Lemma 25 as an algorithmic recipe for reducing the problem
of deciding whether a given connected almost-disjoint rank-3 hypergraph
H with exactly one 2-edge is a winner, to such hypergraphs that are even
Maker-2-connected instead of just connected.

If an application of Lemma 25 yields any Bi with more than one 2-edge,
this Bi is a winner by Corollary 11, and then H is one, too. Otherwise,
we apply Lemma 25 recursively to each of A,B1, . . . , Br until we either
find a component with two 2-edges or no articulation vertices are left and
hence, all pieces are Maker-2-connected. (Remember that a single 2-edge
is by definition Maker-2-connected.) Eventually we know that the original
hypergraph H is a winner iff one of those Maker-2-connected fragments is.
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4. Between the Docks

We are left with the task of finding out whether a given almost-disjoint
rank-3 Maker-2-connected hypergraph H with exactly one 2-edge is a win-
ner. Figuratively, we shall view the unique 2-edge, which we will henceforth
denote by φ = {α, β}, as sitting at the center of H and everything else ar-
ranged around it. We then try to understand how this environment can look
like, under what conditions it yields a win and why it perhaps does not.

Call all edges adjacent to φ dock edges, motivated by the fact that the
rest of H is connected to φ through them. Anything else between the docks,
that is, the subhypergraph of H with α, β, and all dock edges removed, will
be called the core, denoted by K.

By almost-disjointness, each dock edge contains only one of α and β, so
anticipating the way we shall draw pictures, we may speak of lower docks,
those incident with α, and upper docks, incident with β. The vertices in
the docks, except α and β, are called dock vertices. The two sets of upper
and lower docks will sometimes be referred to as the upper and lower shore,
respectively. We distinguish two types of docks, which have to be treated
very differently. Call a dock closed if its dock vertices are connected in K,
otherwise call it open.

Figure 7 gives an overview. It displays a hypergraph with four upper
and four lower docks. Connections between docks being indicated as mere
paths, though they can, in principle, be arbitrarily complicated, of course.
As in most figures in this section, we omit the 2-edge φ between α and β
from the drawing for graphical reasons.

β

α

the core K

upper dock

lower dock

vertices
dock

dock

dock

closed

open

Figure 7. A schematic picture of docks and core.

To decide whether a hypergraph arranged as above is a winner or a
loser, we take the following approach. Throughout this section we make
the general assumption that the hypergraph H at hand is a loser and try
to rule out configurations that would conflict with this assumption because
they yield a Maker win. Eventually, we shall find that only a few connection
types between the docks are possible. After that, in the next section, we shall
prove that our classification is valid, i.e., none of the left-over configurations
can be won by Maker.

We begin our analysis on a global scale. Our first observation accounts
how many docks of what type can be connected to a single open or closed
dock.
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26. Observation. In the core K of a loser H, no two different docks
from the same shore are connected. A closed dock is connected to exactly
one dock on the other shore. Each dock vertex of an open dock is either
connected to one dock on the other shore or to no docks at all, but at least
one of them is connected to another dock.

Proof. The first statement is the basic observation, which then implies
the others. Assume for contradiction that two different lower docks e =
{α, a, a′} and f = {α, c, c′} are connected in K, i.e., there is a path from
a or a′ to c or c′. Pick a shortest such path P and change vertex labels
if necessary, to have P going from a to c; this guarantees that none of a′

and c′ are touched by P . (Note that a = c is possible.) See Figure 8.
Maker can win by playing at α because by Lemma 15 this move requires an
immediate answer in the cycle αeaPcfα but Breaker must also destroy the
now singleton edge {β}.

The rest is an easy implication of the above. Every dock must be con-
nected to at least one other dock to make H Maker-2-connected and in each
case a connection to some further dock would induce a connection between
docks from the same shore. �

β

α

e f

P

a ca′ c′

Figure 8. Two connected lower docks yield a win.

Figure 7 already contained schematic representations of all dock connec-
tions allowed by Observation 26.

In the following, we investigate the local structure of the different con-
nection types between docks: open-open, closed-closed, and closed-open. In
each case, we face a lower dock g = {α, a, c} and an upper dock h = {β, b, d}
that are somehow connected in the core K of H. As in Observation 26 above,
we always make the general assumption that the whole hypergraph H is a
loser.

Between two open docks. The situation between vertices from two
open docks is very simple.

27. Observation. Let the docks g = {α, a, c} and h = {β, b, d} both be
open, with a and b connected in the core K. Then the connected component
of K that contains a and b is simply a path between these two vertices that
contains no further dock vertices.

Figure 9 visualizes Observation 27. We postpone the proof for a second
to discuss a general issue. Almost all arguments throughout this section
require us to pick inner vertices on paths that lie “between” certain given
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α

β

b d

a c
g

h

P

Figure 9. Two open docks connected by a path.

vertices. While such a notion would be clear for ordinary graphs, we should
make it precise for our hypergraphs.

28. Definition. For two distinct vertices u, v of a path or cycle P , we
say that some other vertex x lies between u and v on P if x is an inner vertex
of the subpath uPv or x = u or x = v.

As an example, we have marked the vertices between u and v on the path
on the left-hand side of Figure 10 with circles. We will use this concept in
situations where there exists some other path Q from u to v, with Q disjoint
from P except for the terminal vertices u and v. Then a vertex between u
and v on P will be an inner vertex of the cycle uPvQu.

v

u
x

Q

P

α

β

b

a g

h

u

v

Figure 10. An example path with all vertices between two
vertices u and v marked (left) and an extension of Figure 9
by another path (right).

The main ingredient for the proof of Observation 27 is Lemma 23, which
we use here for the first time. It is the technical tool to provide us with
the intuitively obvious fact that if we add any further edge to the hith-
erto constructed part of H between two docks, there will be a whole new
path between two distinct vertices of this subgraph because H is Maker-2-
connected. We will see this argument repeatedly in the following and we
give it here in great detail as a general example.

Proof of Observation 27. Pick any path P from a to b as shown in
Figure 9. Maker will use the cycle C = αgaPbhβφα (i.e., the path P closed
to a cycle by the two docks and the 2-edge φ) to set up threats against
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Breaker. To show that no further edges are incident to vertices of P , we
assume for contradiction that some edge e ∈ E(K)\E(P ) is connected to P .

In the general case, when e contains a vertex z 6∈ V (P ), we apply
Lemma 23 as follows. The middle layer M in that lemma is V (P ). The
bottom layer B consists of all vertices of H that are connected to α and β in
H −P , i.e., it contains α, β, and the vertices between all the other docks of
H. The top layer T is the rest V (H) \ (M ∪B), which is not empty because
we have z ∈ T . Now Lemma 23 tells us that there is a path Q in K that
connects two distinct vertices u, v of P and contains no further vertices of P .

Between the vertices u and v on P we find an inner vertex x of our cycle
C. (We refer to the inner vertices of C rather than those of P because we
need to include the end vertices a and b as well.) The right-hand side of
Figure 10 shows a concrete example where one of u and v is an outer vertex
of P and the other an inner. A suitable x is found between them. This x is
clearly also an inner vertex of the cycle D = xPuQvPx.

In the special case e ⊆ V (P ) we do not need the Lemma 23 for path
finding, of course. Simply pick two vertices u, v of e that are closest to each
other on P . Again there is an inner vertex x of C between u and v, which
is also an inner vertex of the cycle D = xPuevPx.

In any case, Maker wins by playing at x because Lemma 15 restricts
Breaker’s reply to the cycle D, while Lemma 16 requires a move in the
2-edge φ of C, which does not touch D. �

Since Observation 26 leaves the possibility that one of the two dock
vertices of an open dock is connected to no other dock vertex as long as the
other one is, we must note this simple case, too.

29. Observation. If a dock vertex of an open dock is connected to no
other dock vertices then it is not incident to any edge of K.

Proof. If some K-edge was connected to such a vertex, this vertex
would be an articulation point of H, in contradiction to Maker-2-connected-
ness. �

Between two closed docks. The situation of two closed docks con-
nected in K is considerably more complicated to analyze than the previous
case of two open docks. A waterproof discussion requires the investigation
of many potential configurations. In the end, however, we shall see that all
but one simple arrangement can be excluded because they would lead to
immediate Maker wins.

Let us begin with the construction of the objects that we know must be
there. Pick two paths A and B in K, the former from a to c and the latter
from b to d. See Figure 11 for two concrete example configurations. We do
not require, nor can we prove, disjointness of A and B but we know these
paths cannot intersect too deeply. As it turns out, the vertex x in the left
example from the figure already leads to a Maker win.

30. Observation. The paths A and B cannot share a vertex that is at
the same time an inner vertex of A or one of the two dock vertices a and
c, and an inner vertex of B or one of the two dock vertices b and d. In
particular, the docks g and h do not intersect.
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Proof. Assume there exists such a common vertex and pick such an x,
if possible one of the dock vertices. We show that Maker wins by playing
at x. If x is an inner vertex of A, we have the two paths Pa := xAagαφβ and
Pc := xAcgαφβ (see left-hand side of Figure 11) in each of which Breaker
must answer. So Breaker must play a vertex in g ∪ φ. If x = a or x = c,
Lemma 12 forces Breaker to answer in the same set. A symmetric argument
for the upper shore shows that Breaker must also play in h ∪ φ.

α

β

b

a g

h
d

x

c

B

A

α

β

b

a g

h

A

B

d

c

e
x

y

Figure 11. The two connecting paths A and B touching in
a common inner vertex (left) and touching in two different
vertices (right).

If g and h do not intersect then this already tells us that Breaker can
only play at α or β. If g and h do intersect then their intersection is by
almost-disjointness only one vertex, which by our choice must be x and is
thus already taken by Maker. Therefore, Breaker is restricted to play at α
or β in this case, too. In addition to this, Lemma 15 requires an answer in
each of the two cycles xAagcAx and xBbhdBx, whose intersection does not
contain α and β. So Maker wins. �

Note that Observation 30 also excludes the possibility that the paths A
and B share an edge because at least one vertex of such an edge would be
an inner vertex in both paths (or dock vertex). This tells us that A and B
cannot overlap too much. We now show that they cannot even intersect in
two vertices.

31. Observation. The upper and lower path, A and B, share at most
one vertex.

Proof. Assume for contradiction that the two paths intersect in more
than one vertex; we show that this gives a Maker win. Pick a shortest
path P in A ∪ B from g to h. By symmetry we may assume that P goes
from a ∈ g to b ∈ h and then minimality implies that c, d 6∈ V (P ). Hence,
C = αgaPbhβφα is a cycle.

Starting at a, we walk along C into the core until we enter the first edge
e that does not lie in A. (In an extremal case, e might actually be the dock
edge h.) Denote the inner vertex of C that came just before e by x; clearly
x ∈ V (A) ∩ V (B). Note that we do not claim that x be an inner vertex of
A or B. Compare the right drawing of Figure 11.

Let y 6= x be a further contact point of A and B such that the total
length of the paths xAy and xBy is minimal. Observation 30 implies that
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these two subpaths share no edges and therefore, by minimality and almost-
disjointness, the composition D = xAyBx is a cycle (not self-touching)
which clearly has x as an inner vertex. We have constructed two cycles, C
and D, which share x as an inner vertex. Maker plays at x. By Lemma 16
Breaker must answer at α or β and by Lemma 15, he must play somewhere
in D, but these vertex sets are disjoint. �

In case that A and B do not touch at all, we now extend our construction
by a connecting path. Let F be a shortest such path from any vertex u of A
to any vertex v of B. (See the right-hand side of Figure 12 for an example.)
Note that in contrast to ordinary graphs, the minimality of F does not
guarantee that F contains no further vertices of A or B. So we have to
prove this property.

32. Observation. The connecting path F touches A and B each in only
one vertex.

Proof. Assume for contradiction that F touches B in two vertices, u, v,
say. If one of these vertices is a dock vertex, let x be this dock vertex. (By
almost-disjointness there can be only one.) Otherwise there lies at least one
inner vertex of B between u and v; let x be such an inner vertex then. See
the left-hand side of Figure 12.

β

b
h

d
q
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a g c

p
F

β

b
h

d
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vx

α

a g c

A

F

w

Figure 12. The connecting path F touching B in two places
(left) and touching an inner vertex of B (right).

Maker plays at x. If x is a dock vertex then Lemma 12 requires an
answer in the path xhβφα. Otherwise we have the two paths xBbhβφα and
xBdhβφα in both of which Breaker must play, which leaves the same replies
b, d, β, α. By Lemma 15, Breaker must also answer in the cycle xBuFvBx
since it contains x as an inner vertex. Together, even in the best case for
Breaker, when b and d both lie in that cycle, he is left with no more replies
than b and d.

There are further threats on the lower side. We have the two paths
xBuFwAsgαφβ and xBvFwAsgαφβ, where w is a contact vertex of F and
A, and s is either a or c. Lemma 12 forces Breaker to play in both paths but
their intersection clearly contains none of b and d; hence Maker wins. �

We now know that F connects exactly one vertex p of A to one vertex q
of B. (Where the case that A and B touch is included as the degenerate case
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where F has length 0 and consists of just one vertex p = q.) See Figure 13.
We can say even a little bit more. The contact points p and q cannot be
arbitrary vertices of A and B. Only outer vertices, as drawn in the figure,
are allowed.

33. Observation. The vertices p and q are outer vertices of A and B,
respectively.

Proof. Assume for contradiction that one of them, q, say, is an inner
vertex, of B. See the right-hand side of Figure 12. We assume by symmetry
w.l.o.g. that c is no closer to p than a so that qFpAagαφβ is a path (i.e.,
does not use a vertex twice).

Maker plays at a. Then Lemma 12 requires an answer in the path agαφβ
and Lemma 15 one in the cycle aAcga. Therefore Breaker must play at α
or c. Maker’s next move is at q. It lies on the path (qFpAa)[+a] and is an
inner vertex of the cycle qBbhdBq. Lemma 12 and Lemma 15 require an
answer in the path and the cycle, respectively, and since these substructures
intersect only in Maker’s vertex q, Maker wins. �

β

b
h

d

α

a g c

F

p
A

B
q

Figure 13. The final configuration between two closed
docks consisting of the three paths A,B, and F .

We are almost done. It remains to show that Figure 13 is complete.

34. Observation. There are no further edges in the core K touching
any vertex of the three paths A,B, and F .

Proof. Let M := A ∪ B ∪ F . We assume for contradiction that there
exists some further edge e ∈ E(K) \E(M) that contains a vertex of M . If e
contains also some vertex outside of M , we can apply Lemma 23 to obtain
a path P in K connecting two vertices u, v ∈ V (M) and containing no other
vertex of M . In the degenerate case, when e ⊆ V (M), we pick two vertices
u, v ∈ e such that the unique path from u to v in M does not contain the
third vertex w of e.

Denote by Q the unique path from u to v in M , precisely, Q is of the form
uAv, uBv, uFv, uApFv, uBqFv, or uApFqBv, depending on the locations
of u and v. Together with the path P , respectively the edge e, this path
forms a cycle C = uQvPu respectively C = uQveu in K. Next we pick
a shortest path R in M from the lower dock to the upper dock, w.l.o.g.
R = aApFqBb. Minimality guarantees that this path does not contain the
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other two dock vertices c and d, so that the composition D = αgaRbhβφα is
a cycle which contains the 2-edge φ. The left-hand side of Figure 14 shows
what we have constructed so far.
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Figure 14. Cycle constructions for the proof of Observation 34.

We now have to distinguish the different types of Q. If the cycle C
contains an edge of F then this edge contains a vertex x that is inner to
both cycles. As in many situations before, Lemmas 15 and 16 then show
that if Maker plays at x, Breaker has no reply to the threats of the two
cycles C and D, so he loses.

The situation is similarly easy for Maker if u, v ∈ V (A) and the subpath
uAv contains the contact point p (the case u, v ∈ V (B) being completely
symmetric to this). Then the cycle C again shares an edge with R, namely
the one edge of A that contains the vertex p. So Maker wins at a vertex in
this edge.

The only remaining configuration is one that has u and v on the same
side of p on the path A, as depicted in the right drawing of Figure 14.
Between u and v lies an inner vertex x of A (x ∈ {u, v} being allowed)
and this x is clearly also an inner vertex of C. We claim that Maker wins
at x. Consider the two paths P1 = xAagαφβ and P2 = xApFqBbhβφα.
Lemma 12 requires a reply in their intersection, the 2-edge φ plus possibly
the dock vertex c. The cycle C, in which Breaker must also play, contains
none of these vertices, so Maker wins. �

This concludes the analysis of the core between two closed docks. It
must look exactly as shown in Figure 13.

Between a closed and an open dock. To analyze the core between
a closed and an open dock, we cannot proceed as in the previous cases. If
we started with a few basic connections and then added new paths provided
by Lemma 6, trying to sort out winning configurations, we would never
reach an end. As we shall see, there exists an infinite family of topologically
different core types. So we have to take a different approach, which unfor-
tunately comes not as naturally as the incremental one. We first present a
uniform class of hypergraphs—without further motivation—and afterwards
prove that the core between a closed and an open dock must come from this
class.
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35. Definition. A 3-uniform hypergraph L is called a ladder of height
h ≥ 0 on a0 and c0 if it can be constructed by the following procedure:

- begin with the empty hypergraph L0 = ({a0, c0}, ∅) on two vertices
a0, c0;

- for i = 1, . . . , h do
(if h = 0 then simply skip the loop)

- take a new path Fi of length ≥ 2 with start vertex ci−1, end
vertex ai−1 (which are both vertices of Li−1) and no further
vertices common with Li−1;

- denote the last inner vertex of Fi by ai and the last outer
vertex different from ai−1 by ci; as shown in this figure:

ci−1

. . .
ai−1ai

ci

Fi :

the vertices ai and ci will be the contact points for the next
path Fi+1;

- let Li := Li−1 ∪ Fi;
- either end the construction of L by letting L := Lh

or take an optional additional path R from ch to some vertex r of
the path ch−1Fhah except ah (but r = ch−1 allowed) that contains
no further points of Lh and let L := Lh ∪R.

Figure 15 shows a ladder of height 4. The dotted bubbles indicate level sets,
defined as follows. The ith level, 1 ≤ i ≤ h, consists of the set V (Fi) \
{ai−1, ci}, i.e., the vertices of the path ci−1Fiai. On level 0 lies only the
vertex a0; and the remaining vertices at the top of L, which are exactly
those in V (R) \ {r} or only the single vertex ch, in case the optional path
R is not present, form the highest level h + 1.

a2

c1a1

a0c0

c2

c3a3

c4 a4

r

F4

F2

F3

F1

level 0

level 2

level 4

level 3

level 1

level 5

Figure 15. A ladder of height 4 with the optional top path
R drawn dashed and the level sets indicated as dotted bub-
bles.

We let the highest level of a ladder be one above its formal height because
we like to think of the vertex ch and the optional path R as parts that do not
belong to the regular structure. This convention shall turn out convenient.
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The introduction of ladders is motivated by the next observation, which
describes the closed-open case completely. We still face two docks g =
{α, a, c} and h = {β, b, d} in a hypergraph H, which we assume to be a loser.
This time, g shall be closed and h shall be open, with a and c connected to
b in the core K. Let J denote the connected component of K that contains
the dock vertices a, b, c, extended by the vertices α and β and the dock edges
g and h. We can now put all we have to say about J in one brief statement.

36. Observation. The hypergraph J is a ladder on a0 = α and c0 = β.
Its height is at least 1, and at least 2 if it does not contain the additional
path R.

Figure 16 shows such a ladder on α and β with the two contained docks
arranged in the way we usually draw them.

db

a1 c1

α = a0

β = c0

Figure 16. A ladder of height 3 connecting a closed lower
and an open upper dock.

In order to allow the rather long and technical proof of Observation 36
to focus on the basic ideas, we prepare the main technical tools separately
in advance. Like in the open-open and closed-closed case, we will argue that
if J contains any further edges not in L then the whole hypergraph H must
be a winner. Therefore we again need a suitable set of paths that end in
a 2-edge and can thus be used as threats against Breaker. For the present
open-closed case, we shall make repeated use of certain paths that connect
some vertex x somewhere up in the ladder to one of the base vertices a0 and
c0, which we define recursively as follows.

For a level-1 vertex x let

Pa(x) = xF1a0 and Pc(x) = xF1c0

denote the shortest path from x to the respective base vertex. For x on a
level j with 2 ≤ j ≤ h, let

Pa(x) =

{
xFjcj−1Pa(aj−1) if j even,

xFjaj−1Pa(aj−1) if j odd

and

Pc(x) =

{
xFjaj−1Pc(aj−1) if j even,

xFjcj−1Pc(aj−1) if j odd.

These somewhat cumbersome definitions describe rather simple geometrical
objects: two kinds of paths that climb down the ladder on its left and its
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right rail. The paths Pa all head for a0 while the Pc aim for c0. The parity
conditions simply take care of the alternating orientations of the paths Fi:
Pa(x) goes through the ai with even i and through the ci with odd i; for
Pc(x) vice-versa. Figure 17 depicts the two complementary paths Pa(x) and
Pc(x) for a level-4 vertex x (compare to Figure 15). The path Pc(x) starts
from x along F4 to its left end, from where it descends down the ladder along
the left rim. Likewise, the path Pa(x) climbs down the right-most edges of
the ladder.

a2

a1

c0

c2

a3

c4 a4 x

a2

c1a1

a0

c3a3

x

Figure 17. The paths Pc(x) (left) and Pa(x) (right) for a
vertex x on level 4 of the ladder from Figure 15. Common
vertices marked.

The following property makes the paths Pa and Pc useful for Maker.

37. Lemma. Let x be a level-j vertex of some ladder of height h. If x
is an inner vertex of Fj or its starting vertex cj−1 then the two paths Pa(x)
and Pc(x) intersect in no vertices other than x and all ai with 1 ≤ i < j.

Proof. From their starting point x on Fj the two paths in consider-
ation head in opposite directions. (Note that in the case x = cj−1 this is
guaranteed because the level of this vertex was defined to be j, not j − 1.)
Once the two paths enter Fj−1, they stay on opposite sides of the ladder as
far as possible. Hence, they can only intersect in the middle vertices ai that
lie below. �

The paths Pa and Pc shall now be used to derive Maker wins for any
configuration that deviates from a ladder shape.

Proof of Observation 36. Pick any inclusion-maximal ladder L on
a0 = α and c0 = β in J , which will have height at least 1 because any
path from β to α can serve as the path F1. We do not demand that L have
greatest possible height but only that we cannot extend it with J-edges to a
larger ladder. It might be helpful to convince oneself that this means exactly
that either L contains the optional path R—which in a way seals off the top
part of L—or that there is no additional path from ch to any other vertex
of Fh; although formally, this fact shall not be needed in this proof.

So assume for contradiction that J ) L. As before we either employ
Lemma 23 to get a J-path P between two distinct vertices of L or, in the
degenerate case, we find a single edge e ∈ E(J) \ E(L) with e ⊆ V (L). Let
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j be the lowest level touched by P respectively e. We distinguish different
possible contact configurations.

If the second contact point of the path P lies also on level j or, in the
degenerate situation, if at least one further vertex of the additional edge e
does, then Maker wins as follows. Denote the two contact points of P and
L by u and v. In the degenerate case, pick u, v ∈ e such that the third
vertex of e does not lie between u and v on the path Fj (respectively R,
if j = h + 1). Then there exists an inner vertex x of Fj respectively R
between u and v. See Figure 18. This x is an inner vertex of the cycle
C = xFjuPvFjx respectively C = xRuPvRx, which in either case contains
no vertices on levels strictly less than j. (Observe that calling cj a level-
(j + 1) vertex was again necessary to guarantee that the cycle C cannot use
the edge {aj−1, aj , cj}.) For the case j = 1 we note that C does surely not
contain c0 because otherwise it would include the upper dock, making it a
closed dock.

Now Maker plays at x. By Lemma 15, Breaker’s reply must be in C
but Lemma 12 prompts for an answer in each of the paths Pa(x)a0φc0 and
Pc(x)c0φa0. By Lemma 37 the intersection of these two paths and the cycle
C contains no vertex other than x, so Maker wins.

aj−1

aj−2

cj−1

aju

vx
C

cj

cj−2

P

Fj

Figure 18. Both contact points u and v on level j.

Our analysis of the situation where there is only one contact point, u,
say, on the lowest contact level j ≥ 1 splits into two cases. First the general
case: j < h. The union of all paths Fi with i > j together with the path R
(provided it is present), i.e., the induced subhypergraph of L on all vertices
on levels above j and the vertex aj , forms a connected subhypergraph M
of L, shown in Figure 19. Pick a shortest path Q in M from aj to v, the
second contact point of the new path P (respectively e) and L, which must
lie in M because u is the only contact on level j. If there is a third contact
point w, relabel v and w if necessary, such that v lies no farther from u than
w, so that by almost disjointness w does not lie on Q. We obtain a cycle
C = ajQvPuFjaj with aj as an inner vertex. By construction, C contains
no vertices strictly below level j. Maker plays at aj . Just like above, Breaker
is forced to answer in C but also in each of the two paths Pa(aj)a0φc0 and
Pc(aj)c0φa0, whose intersection contains no vertex of C, except aj , of course.
Hence Maker wins.

It remains to consider the case j = h. (j = h + 1 is impossible because
that would leave no higher levels for the second contact point.) First observe
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aj−1cj−1

aj cju

v

Q

P

M

Figure 19. Second contact point v on a higher level.

that L surely contains the optional path R since otherwise the new path
P (or the edge e) would have to connect to the only level-(h + 1) vertex
ch, forming such a path R itself, thereby contradicting the maximality of
L. We know that P (resp. e) connects u ∈ V (Fh) \ {ah−1, ch} to some
v ∈ V (R) \ V (Fh). See Figure 20. A possible further contact point w would
also have to lie in this set, in which case we assume w.l.o.g. that v come
before w on rRch, so that w does not lie on the path rRv.

ah

ah−1

ch

ch−1

r

u

v
R

P

Fh

x

Figure 20. Contact points on levels h and h + 1.

If u = r then Maker wins easily at u because this is then an inner vertex
of the cycle uRvPu, which intersects at least one of the paths Pa(u) and
Pc(u) only at x (depending on the parity of h). Note that u need not be
an inner vertex of Fh for this to work. So we are left with the case u 6= r.
Between u and r on Fh we find an inner vertex x of Fh (x = u and x = r
being allowed). This x is also an inner vertex of the cycle xFhuPvRrFhx,
which contains no vertices strictly below level h. Like we argued before,
Maker wins by playing at x because Breaker cannot play in this cycle and
the two paths Pa(x)a0φc0 and Pc(x)c0φa0 at the same time.

This eventually shows that our assumption J ) L must be false. The
additional statements about the height of L follow immediately from the
fact that the lower dock is closed. �

5. Playing for Breaker

The classification into different connection types in the core started from
the assumption that the whole hypergraph at hand was a loser. We do not
know yet, whether any hypergraph with one 2-edge whose core uses only
those connections singled out in the previous section, could perhaps be a
winner. We settle this issue by proving the open implication of the following
theorem.
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38. Theorem. An almost-disjoint Maker-2-connected hypergraph with
only 3-edges except exactly one 2-edge is a loser if and only if its core con-
nections are of the following three types:

- between two open docks there is only a path as described in Obser-
vation 27 and shown in Figure 9 on page 44,

- between two closed docks the connection satisfies all properties
stated in Observations 30 through 34 as shown in Figure 13 on
page 48,

- between a closed and an open dock the connection is a ladder as
stated in Observation 36 and indicated in Figure 16 on page 51.

Elementary losers. Essentially, the task in this section will be to prove
that certain hypergraphs, usually subhypergraphs of the given hypergraph
at hand, are losers. Besides some side remarks along our discussion of win-
ning paths and cycles in Section 2, we have by now not really proven any
hypergraphs losers. So let us start by collecting some necessary basic facts,
again about paths and cycles.

39. Lemma. Any almost-disjoint 3-uniform path P is a loser. Moreover,
even P [+u] is a loser for any vertex u ∈ V (P ).

Proof. It suffices to prove the second, stronger statement; by induction.
Let v be any Maker move in P [+u]. Breaker can always separate u and v in
the following way. If u and v do not lie in a common edge of P , Breaker
plays a vertex y between them. (For example, in Figure 10 on page 44, y
would be one of the two marked vertices between u and v.) Otherwise he
plays the third vertex y in the edge that contains u and v.

The hypergraph P [−y] is then the disjoint union of two paths, where u
lies in one component and v in the other. Each of those components are
losers by induction and consequently, the whole graph P [+u,+v,−y] is a loser
by Lemma 17. A length-zero path with just one vertex is trivially a loser
because it contains no edges that Maker could fill. �

40. Lemma. An almost-disjoint cycle of 3-edges is a loser. Even more,
it remains a loser if we replace one 3-edge by a 2-edge.

Proof. It obviously suffices to prove the second statement. (The right-
hand side of Figure 4 on page 36 showed how a cycle with one 2-edge can
be interpreted as a 3-uniform cycle with a Maker play at an outer vertex.)
Irrespective of where in the cycle Maker plays his first move x, Breaker
always takes one vertex of the 2-edge, destroying that edge. The resulting
hypergraph can be interpreted as a path of 3-edges in which Maker has
played one vertex, x. Hence it is a loser by Lemma 39. �

Typical applications of Lemma 39 will be configurations in which some
path is only connected through a single vertex to the rest of the hypergraph.
In such a situation, the Articulation Lemma tells us that we can either
remove that path completely or, if it already contains a Maker move, replace
it by another Maker move at the contact point. The precise conditions are
captured by the following corollaries to Lemma 39.



56 2. WEAK POSITIONAL GAMES

41. Corollary. Let H = P ∪ B be the union of an almost-disjoint
3-uniform path P and an arbitrary hypergraph B that have exactly one point
in common. Then H is a winner if and only if B is. �

42. Corollary. Let P be an almost-disjoint 3-uniform path and B be
an arbitrary hypergraph, such that V (P )∩V (B) = {p} for some articulation
vertex p. Let furhter x be any vertex of P . Then the union H = P [+x] ∪ B
is a winner if and only if B[+p] is. �

Since ladders play an important role in our classification, we shall need
losing conditions for them, too.

43. Lemma. A ladder on a 2-edge is a loser.

44. Lemma. Let x be a vertex on the 1st level of a ladder L on a0 and c0.
Then the hypergraph L[+x,−a0] is a loser.

a2

x

a2
F2F2c2 c2

F1F1

c0 a0

a1 c1

c0 a0

a1 c1

Figure 21. The ladder configurations of Lemma 43 (left)
and Lemma 44 (right).

Figure 21 shows the respective configurations of these lemmas. The two
statements are closely related. We prove them together by an interleaved
induction.

Proof of Lemmas 43 and 44. We parameterize the lemmas by the
height: A(h) denote the statement of Lemma 43 restricted to ladders of
height h and B(h) denote the statement of Lemma 44 restricted to ladders
of height h. We perform a mixed induction on h by reducing B(h) toA(h−2),
and A(h) to A(k) and B(`) with k < h and ` ≤ h. Note that this avoids
circular arguments although A(h) may use B(h), because B(h) does not rely
on A(h).

Induction bases. Since a height-0 ladder on a 2-edge is just that 2-
edge, A(0) is obviously true, and B(0) is true simply because the respective
hypergraph does not contain any edges on which Maker could win. Let us
also treat B(1) at this point to take care of some irregularities which result
from the path R. If the optional path R is not present, the hypergraph
is just the path F1 with one vertex played, a loser by Lemma 39. If R is
present, we can simply remove it because Breaker’s move a0 has destroyed
the second contact point c1 of R and F1. So we get the same loser as before.
(Though Figure 21 shows the regular path F2 instead of the path R, one can
still see there that the rightmost path can be deleted because of Breaker’s
move at a0.)

The induction step for B(h), h ≥ 2, works similarly. We use Corollary 42
to replace the path F1 by a single Maker move at a1. Then we delete the
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dangling path F2 (see right of Figure 22) by Corollary 41. What’s left is a
ladder of height h− 2 on the new 2-edge {a2, c2}.

Induction step for A(h), h ≥ 1. If Maker plays his first move x on level 0,
i.e., x = a0, then Breaker answers at c0. We can then delete the path c0F1a1

(or a slightly shorter path up to r if h = 1 and R is present). This leaves a
ladder on the 2-edge {a1, c1}, a loser by induction.

If Maker’s first move x is on level h or h + 1, Breaker answers at ah−1.
This disconnects levels h and h + 1 from all lower levels. See the left-hand
side of Figure 22. If x lies on level h, the top part is a loser by B(1) and if x
lies on R then we can remove most of Fh so that the rest of the top part is
a loser by Lemma 39. The lower part is (after removal of the dangling path
Fh−1) a ladder of smaller height, hence also a loser by induction.

ajahch
r

Fh

cj
x

cj+1aj+1

Fj

R

aj−1 cj−1

aj−2cj−2

ch−1ah−1

ch−2 ah−2

Figure 22. Maker plays x on level h or h + 1 (left) and
Maker plays on an intermediate level j < h (right).

We turn to the general case: Maker x on a level j with 1 ≤ j < h. In
this situation Breaker plays aj−1. See the right-hand side of Figure 22. As
in the previous situation, the ladder breaks up into a lower and an upper
part, the former again (after removal of the dangling path Fj−1) being a
shorter ladder on the 2-edge {a0, c0}, a loser by induction. The upper part
can be interpreted as a ladder on aj−1 and cj−1 with aj−1 already played
by Breaker and the vertex x (now on level 1) already played by Maker. A
loser by induction. �

Almost all arguments during our classification in Section 4 were in a
sense written out of Maker’s perspective. Usually, we proved that some
configuration cannot occur in a loser by presenting a winning strategy for
Maker. The case distinctions were set up in such a way that in each step we
could derive a Maker win with very few explicit moves—often just one—by
listing several threats in the form of paths and cycles, that could not all be
countered by Breaker at the same time.

The present situation is very different. We want to show that Maker
cannot win on certain hypergraphs. So we pick good Breaker moves and
must, in principle, provide counters against all possible Maker attacks. The
obvious problem here is: Breaker has no threats; by the very definition of
the game.

In the proof of the two preceding ladder lemmas, we could exploit the
strong symmetry of ladders, which allowed an induction. The question now
is: How to get control over all possible Maker strategies on the whole hyper-
graph H? The key is again the central role of the 2-edge φ. If we manage
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to get a Maker or Breaker move into that edge, the hypergraph will lose its
Maker-2-connectivity. Precisely, if β is taken then α becomes an articula-
tion vertex, which makes the hypergraph amenable to an application of the
Articulation Lemma to break it into smaller parts. The resulting compo-
nents will then be simple enough to be analyzed by the above lemmas about
paths, cycles, and ladders.

The basic components. Let us collect all such components that arise
when Breaker plays one vertex of the 2-edge φ, at β, say. Precisely, we list
all types of hypergraphs M such that H [−β] can be written as a union M∪D
with V (M)∩ V (D) = α and such that α is not an articulation vertex of M ,
i.e., we only consider minimal components.

First observe that such a component M contains no more than 3 docks
because any lower dock g is connected to at most two upper docks and
in H [−β] any upper dock vertex is connected to at most one lower dock.
Closed upper docks have unique lower partners anyway and all open docks
are destroyed at β so that they no longer link their partners on the lower
shore.

Out of the three connection types from the previous section, we assemble
again three essentially different types of such components M .

(i) Two connected closed docks, where the upper dock has been de-
stroyed. See the upper left of Figure 23.

(ii) A closed lower dock connected to an open upper dock. This is
simply a ladder, shown on the upper right of Figure 23.

(iii) An open lower dock between two closed upper docks, which both
have their base point a0 = β deleted. This is the union of two
ladders with the base point a0 deleted in each, glued together on
the first edge of their F1-paths. See the lower part of Figure 23.

The remaining possibilities of an open lower dock between two open
upper docks or one open and one closed upper dock, or an open lower dock
linked to just one upper dock, can be interpreted as subhypergraphs of
configurations covered by case 3 since a path to an open dock can be seen
as the first level of a ladder. So we omitted them from the above list since
it will suffice just to observe that all relevant properties of components of
type (iii) will carry over to them.

The base case. Our analysis of possible Maker moves begins with the
easiest situation, where Maker takes α and Breaker gratefully answers at β
so that afterwards everything is nicely decomposed. Although this is a very
special case, it forms the basic result to which we shall later reduce all the
other possible Maker plays.

45. Observation. If in the first move each player takes one vertex from
the 2-edge φ, the game is lost for Maker.

Proof. To go conform with the above classification, we assume by sym-
metry that Maker has played at α and Breaker has answered at β. We now
simply go through our list and verify for each type whether M [+α] is a loser.

Case (i). Two closed docks. Maker’s move has produced a 2-edge in
the lower cycle. Two applications of Corollary 41 remove the upper cycle
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Figure 23. Components of H [−β].

entirely, together with the path in the middle, leaving only the lower cycle
which is lost by Lemma 40.

Case (ii). A closed lower dock connected to an open upper dock. We
interpret the ladder as sitting on the two dock vertices of the lower dock,
which are now linked by a 2-edge. This is a loser by Lemma 43.

Case (iii). An open lower dock between two closed upper docks. The
two ladders overlap on the lower dock. We shorten one ladder by this edge
so that afterwards they only touch on one vertex. Then one ladder contains
the additional Maker vertex α while the other does not. Applying the Ar-
ticulation Lemma to this common point, we see that the whole component
must be a loser by Lemma 44.

The remaining cases are covered by case 3, as remarked above. �

Although Observation 45 deals with only two very special first Maker
moves, it is the essential step towards the proof of Theorem 38. In the
following we check all possible first Maker moves outside of φ. The analysis
is again split into the old three classes: whether Maker plays between two
open docks, between two closed docks, or between an open and a closed
dock; the classification above, into components M of H [−β], will be used as
a tool only.

The general scheme is the same for all cases. Breaker answers Maker’s
move x by a move in the 2-edge φ, at β, say. Then α has become an
articulation vertex, so we can write

H [−β] = M ∪D with M ∩D = {α}
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and such that M contains Maker’s vertex x, which we technically consider
as not deleted for a second to get a sound definition of M . The component
M is then of one of the three types in Figure 23.

Now comes the decisive trick. We show two things: M [+x] is a loser but
M [+x,+α] is a winner. Then by the Articulation Lemma, this implies that
the whole hypergraph H [+x,−β] is a winner if and only if D[+α] is a winner!
But D[+α] is by construction a subhypergraph of H [−β,+α]. Note that we
don’t have to put an additional +x in the exponent because the vertex x
lies not in D. Now Observation 45 tells us that this hypergraph is lost, so
we are done.

What we did in the previous paragraph could be termed less formally
in the following way. When we know that M [+x] is a loser but M [+x,+α]

is a winner, the Articulation Lemma tells us that α is a reasonable move
for Maker. Since he cannot win on M [+x] he makes the best of this part
by playing the threat α which turns it into a winner. Now, since we may
legitimately assume that Maker will play at α, the problem is reduced to
the question whether the rest D[+α] is a winner. Which, as we know, is not.

46. Observation. If Maker plays his first move between two open docks
(including the respective dock vertices) he loses.

Proof. Breaker answers Maker’s move x by playing at β, destroying
the upper docks. We write H [−β] = M ∪ D as described above, where M
contains two open docks, so it’s type is one of those subtypes of case (iii) in
our classification.

Clearly M [+x,+α] is a winner, and since M is a subhypergraph of a type-
(iii) component, Lemma 44 tells us that it is a loser. As described above,
we conclude that the whole hypergraph H [+x,−β] must be a loser. �

47. Observation. If Maker plays his first move between two closed docks
(including the respective dock vertices) he loses.

Proof. Breaker again takes a vertex from the 2-edge. He has to be a
little careful with his choice, however. Have a look at Figure 13 from page 48
again. If Maker’s first move x is a vertex of the lower path A then Breaker
replies at α, breaking the lower cycle. Likewise, Breaker answers a move in
the upper path B at β. In the remaining case x ∈ V (F ) he picks one of α
and β arbitrarily. (In the special case when F has length 0 and Maker plays
the unique contact vertex in V (A) ∩ V (B), we also let Breaker pick one of
α and β at will.)

Assume by symmetry that Breaker plays β, i.e., x was played on the
upper cycle or the connecting path F . (Have a look again at Figure 23,
where the vertex x was already marked.) As the upper cycle has been
broken, we can apply Corollaries 41 and 42 to replace the complete upper
part B ∪ F by a single Maker move at the contact point p ∈ V (B). Then
Lemma 40 tells us that the resulting cycle A[+p] is lost. In terms of our
general recipe, we have thus shown that M [+x] is a loser. On the other
hand, M [+x,+α] is clearly a winner. Again the general argument described
above now settles the issue. �
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The remaining closed-open case again bears a difficulty. The general
argument we used in the previous cases will only work for the special sit-
uation that Maker’s move is on the first level of the ladder. (Recall that
the core between an open and a closed dock is a ladder.) Plays at higher
levels require an inductive argument and are deferred to the moment when
we compile all our observations into a proof of Theorem 38.

48. Observation. If Maker plays his first move on the first level of the
ladder between a closed and an open dock, he loses.

Proof. Assume by symmetry that the lower dock is the open one.
Breaker plays at β, destroying all upper docks. Then we know that the
resulting component M that contains x is of type (iii) (or a subhypergraph
with just one ladder) with Maker’s move x on the first level of one ladder.
Lemma 44 tells us that M [+x] is a loser and M [+x,+α] is as always trivially
a winner. �

The alert reader might have noticed that case (ii) of our classification
did not show up in the last three observations. This does not mean that it
has been overlooked. It simply was not needed for the proofs. Remember
that Observations 46 to 48 are statements about the three connection types
from Theorem 38, they only used the three M -types from this section as a
tool.

Eventually, almost all details of Theorem 38 have been studied. It is
time to put our observations together.

Proof of Theorem 38. That the core of a loser can only have the
listed connection is obviously true, simply because they are just those types
that survived our lengthy discussion from Section 4.

The converse almost follows from Observations 45 to 48. They provide
successful Breaker counters against all first Maker moves except for a play
on a higher level of a ladder between a closed and an open dock.

This remaining case is the only situation where Breaker must not play
in the 2-edge φ. Instead, he chops a few steps off the ladder. We prove that
Breaker wins if Maker plays on a level j ≥ 2 of some ladder between a closed
and an open dock by induction on the sum S of the heights of all ladders in
the core.

At the induction base S = 0 there are no ladders, so the statement is
trivially true. For the induction step, we let Breaker answer Maker’s move x
at aj−1, just like in the proof of Lemmas 43 and 44. (See the right-hand side
of Figure 22 from page 57 again.) This decomposes the ladder into an upper
and a lower part such that the upper is lost by Lemma 44 and the lower
remains, after removal of the dangling path Fj−1, a ladder of smaller height.
Since Maker’s move x does not lie in the lower part, we have reduced the
original hypergraph to one that still satisfies all requirement of our Theorem
but has smaller ladder-height sum S. This finishes the proof. �

The algorithm. It is time to return to our initial complexity question.
In the following proof of Theorem 4 we compile the results of the preceding
sections into a polynomial-time algorithm for the decision problem of win-
ning and losing. This is a straightforward procedure, simply revisiting all
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reduction steps and showing that the core types from Theorem 38 are check-
able efficiently. We emphasize again that a detailed runtime analysis of the
below method is not our goal. Neither do we strive for an actual implemen-
tation of the described procedures nor for an improvement of asymptotic
runtime bounds. Theorem 38 is a purely qualitative result, identifying the
games at hand as a tractable subclass of general hypergraph games.

Proof of Theorem 4. Let H be the given almost-disjoint hypergraph
of rank-3. By Lemma 17 we can assume that H is connected. If H contains
more than one 2-edge, it is a winner by Corollary 11. If it contains no
2-edges, we create all first-move hypergraphs H [+x,−y] with x, y ∈ V (H)
as described in Section 3 in connection with Lemma 24. This produces a
quadratic number of hypergraphs, amongst which we have to check those
that contain a 2-edge for winning or losing.

All hypergraphs with one 2-edge can be severed at articulation vertices,
as described in Lemma 25, until we are left with Maker-2-connected hyper-
graphs only, each of which contains exactly one 2-edge. (Remember that
whenever this process produces two 2-edges, we are done by Corollary 11.)

The core of each of those Maker-2-connected hypergraphs is then de-
composed into links between the docks, as we did in Section 4. For each
such link we check whether it complies with the specifications of Theorem 38
to see if Maker can win. This is not a difficult task. Each admissible con-
nection type is expressed in terms of paths that are built upon each other.
We can use a simple greedy path-finding method to successively reconstruct
any required or allowed connection. Whenever we spot a violation of the
admissible topology we know that we face a winner. �

6. Almost-Disjointness

We promised some comments on the influence of the almost-disjointness
restriction on our games on rank-3 hypergraphs. Have a look at the two
overlapping 3-edges in Figure 24, who violate this condition. Assume this
configuration occurs within a hypergraph H in such a way that no further
edges touch upon the vertices a and b, so that our edge pair is linked to the
rest of H only through p and q. We claim that in such a configuration the
two 3-edges are of no use for Maker.

p q

a

b

qp

Figure 24. Two worthless 3-edges.

49. Lemma. A hypergraph H containing the left configuration of Fig-
ure 24 with no further edges connected to a and b is a winner iff H [−a,−b],
the same hypergraph with this configuration replaced by the one to the right,
is a winner.



6. ALMOST-DISJOINTNESS 63

Proof. The hypergraph H [−a,−b] is a subhypergraph of H, so if Maker
wins on the former he clearly also wins on the latter. We show that a mak-
ing strategy σ for H on the left yields also a Maker win on the reduced
hypergraph on the right. Therefore we follow this strategy on both hyper-
graphs, copying our Maker moves given by σ from the left to the right and
the Breaker answers, which are played on the right, back to the original
hypergraph H. This works fine as long as our strategy σ does not prompt
us to play at a or b. In that case, if we must play a, say, we actually do
so on the left and then—this is the trick—answer it immediately by a fake
Breaker move at b. In the reduced hypergraph on the right side, these two
half-moves are simply left out. After a and b are taken on the left, we can
continue with σ until the whole board is full.

Who has won? Since we followed the winning strategy σ on the left,
we must have won there, i.e., some edge e ∈ V (H) is completely ours. But
since we have given Breaker a vertex in each of the two 3-edges on a and b,
this winning edge is neither of them. Consequently, we have also occupied
all vertices of e on the right. �

A similar situation—or rather the opposite—is shown in Figure 25.
Again the two edges are part of some bigger hypergraph H in such a way
that no further edge contains a or b and everything else is linked through p
and q, who now are the inner vertices of this little cycle.

a

b

p qp q

Figure 25. Two 3-edges behave like a single 2-edge.

50. Lemma. A hypergraph H containing the left configuration of Fig-
ure 25 with no further edges connected to a and b is a winner iff H [+a,+b],
the same hypergraph with this configuration replaced by the one to the right,
is a winner.

Proof. Assume a making strategy σ for the left hypergraph H. As
above we follow σ on the right until a move in {a, b} is required. In this
case, play this vertex, a, say, and as above, reply by a fake Breaker move at
b. This deletes one of the two 3-edges and turns the other one into a 2-edge
on p and q. From then on we just pursue σ again on both sides to the end
of the game. As in the proof of Lemma 49, we conclude from the fact that
σ has lead to a win on the left that we have also won on the right because
all edges on the left are also present on the right. The newly created 2-edge
is just the one that was present on the right in the first place.

The other implication works very similar, with exchanged sides. Assume
we have a making σ on the right. Against Breaker on the left we also follow
σ—until Breaker takes one of the vertices a and b. (We won’t play there first
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because our strategy does not know those vertices.) In this case, we take
the other vertex and then resume our strategy σ again. Just as above the
two hypergraphs are now completely identical, so we win on the left because
we are sure to win on the right. �

Let us call a pair of two 3-edges that overlap on two vertices a diamond.
The previous discussions have shown again that the inner vertices are, as so
often, the valuable ones, while the outer vertices are of minor interest.

Assume we try to find out whether some given rank-3 hypergraph that is
not almost-disjoint is a winner. If we find a configuration like the one on the
left of Figure 26, Maker can win if the path P connecting the two diamonds
is almost-disjoint because the terminal diamonds behave like 2-edges. If P
is not so nicely behaved and there sits a diamond somewhere on P , as shown
on the right-hand side of the figure, we may assume that this diamond has
some further edge f attached to one of its inner vertices because otherwise,
we could just remove that diamond without changing the value of the game.
From where f is connected, the new diamond looks like a 2-edge again; so
if we trace a path from f back to one of the two terminal diamonds (using
Maker-2-connectivity) we win as soon as we meet another diamond at an
inner vertex.

P

P

P

f

Figure 26. Two diamonds connected at their “good” vertices.

Though we have only just started the discussed of a simple example,
it appears as if the presence of only two or three diamonds in a Maker-2-
connected rank-3 hypergraph create an influence of “pseudo 2-edges” that
should, in general, lead to a win like in the left of Figure 26. What this
“general case” should precisely be, is of course unclear and a proper analysis
appears to bring a lot of case distinctions about. Yet, this brief discussion
might indicate that the problem might be solvable in a way that rids a given
hypergraph from its diamonds so that we may afterwards apply Theorem 4
directly, as a black box, without unrolling the tedious proof of Theorem 38
again.

7. Comparing Games

We close this chapter by introducing a new view on positional hyper-
graph games that incorporates several concepts we have met so far.

Let us have a closer look at our favorite tool, the Articulation Lemma.
Intuitively, it tells us that the two halves of a hypergraph that are only
connected through a single articulation vertex, can interact in only three
different ways. So in a sense, seen through an articulation, there exist only
three different types of hypergraphs: those halves A that win on their own,
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those that do not help the B on the other side at all, and those “semi-
winners” who are not winners themselves but for which A[+p] is a winner.
Cutting such a hypergraph in two at the articulation, we get an isolated
“half” with a marked contact point.

51. Definition. A pointed hypergraph is a pair (H, p) of a hypergraph
H = (V,E) and a point p ∈ V . The one-point union (A, p) t (B, q) of two
pointed hypergraphs (A, p) and (B, q) is the pointed hypergraph(

(A ∪̇B)/{p = q}, {p, q}
)
,

meaning that we take the disjoint union of A and B and then identify the
two points p and q, choosing this merged vertex as the point of the union.

The term “one-point union” is borrowed from topology, confer [10,
Chp. 1, Sec. 13]. Sometimes, when the precise choice of the point is not
relevant, we shall treat a pointed hypergraph just as a hypergraph, simply
ignoring the point, speaking of winners and losers, for example.

p p

Figure 27. Two equivalent pointed hypergraphs.

Of course, we want to play on such one-point unions. Compare the two
pointed hypergraphs in Figure 27. We claim that with respect to composi-
tion at the point p, these pointed hypergraphs have the same value in any
game. Whatever partner (X, q) you plug in at p from the right, either you
win on both one-point unions or on neither of them. We defer the proof of
this statement until we have prepared suitable notions, which shall allow for
a much more general result.

The partial order H1. Define a partial quasi-order on the class of all
pointed hypergraphs by letting

A ≤ B

for two pointed hypergraphs A,B iff

(13) A tX is a winner ⇒ B tX is a winner

for all pointed hypergraphs X.
This relation is obviously reflexive and transitive but clearly not anti-

symmetric. Call A and B equivalent if A ≤ B and B ≤ A, denoted by
A ≡ B. We define H1 to be the partially ordered set that results from
identifying equivalent pointed hypergraphs.

This notion of equivalence captures all information about a pointed hy-
pergraph with respect to its impact on winning and losing when plugged
into some other pointed hypergraph. In the union AtX we may replace A
by any B ≡ A without changing Makers prospects of winning—independent
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of the partner X. Note that by the very definition of ≤, two pointed hyper-
graphs A and B are not equivalent iff there exists some “separating” pointed
hypergraph Z such that AtZ is a winner but B tZ is a loser or vice versa.
So with respect to this Z, the pointed hypergraphs A and B show a different
behavior.

What can we say about H1? First note that it contains a maximal and
a minimal element. Any winner A with any vertex p ∈ V (A) as its point,
is greater or equal than any other pointed hypergraph. Hence, there is a
maximal element 1 in H1 that contains all pointed winners. To see that it
contains only winners, consider some winner A together with an arbitrary
loser B and let U be a pointed hypergraph without any edges. Then A tU
is a winner while B t U is still a loser. Hence, A 6≤ B. This means that
no loser lies above any winner and consequently the class 1 contains only
winners (each with an arbitrary vertex as point). This observation allows
us to abbreviate the expression “A is a winner” as A ∈ 1.

A similar argument shows that H1 has a minimal element, 0, which
contains all absolute losers—pointed hypergraphs that do not contribute
anything. All empty graphs, like U from above, fall into this class. Trivially,
because whenever U tX becomes a winner for such a U and some X then
X alone must already be a winner. Hence, for any pointed C the one-point
union C tX is also a winner and thus U ≤ C. Note that unlike the case of
the maximal element, 0 is not the class of all losers but much smaller. So
U ∈ 0 is really a stronger statement than saying that U is a loser!

What lies between 0 and 1 in H1? The answer is simple, we already
know. The following theorem is the Articulation Lemma in disguise.

52. Theorem. The poset H1 is a linear order of exactly three elements.

Proof. We show that A ≡ B for any two arbitrary pointed hyper-
graphs, neither of which is a winner nor an absolute loser, i.e., A,B 6∈ {0, 1}.
Then we know that there can be at most one further class besides 0 and 1.

Since B 6∈ 0, there exists a Y 6∈ 1 with BtY ∈ 1. Then the Articulation
Lemma tells us that B[+q] must be a winner, where q be the point of B. On
the other hand, we know that for any X with AtX ∈ 1 the reduction X [+p]

must be a winner (p being the point of X), also by the Articulation Lemma,
because A 6∈ 1. Together this means that for any such X the composition
B t X is also a winner. Hence, A ≤ B. Exchanging the roles of A and B
we also obtain the converse relation and therefore, A ≡ B.

To see that a third class in H1 exists at all, simply note that the 2-edge
in Figure 27 is neither a winner nor an absolute loser. �

Our original claim about the two pointed hypergraphs from Figure 27 is
now almost proven. We just argued that the single edge lies in the unique
intermediate class of H1. By Lemma 40 the cycle on the left is no winner
either and it also no absolute loser because it gives a win if composed with
itself. Hence, by Theorem 52 the two pointed hypergraphs must lie in the
same equivalence class. The whole order H1 is shown in Figure 28, with a
typical representative for each class.
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0

1

Figure 28. The poset H1.

Merging along many points. One can generalize the union at just
one point to amalgamations along larger sets. Actually, the index of H1

already calls for the following definitions.

53. Definition. A k-pointed hypergraph is a tuple (H, p1, . . . , pk) con-
sisting of a hypergraph H = (V,E) and a list of distinct vertices p1, . . . , pk ∈
V called points. The k-point union (A, p1, . . . , pk) t (B, q1, . . . , qk) of two
k-pointed hypergraphs is the k-pointed hypergraph(

(A ∪̇B)/{pi = qi : 1 ≤ i ≤ k}, {p1, q1}, . . . , {pk, qk}
)
,

meaning that we take the disjoint union of A and B and then merge each
individual point pair {p1, q1} through {pk, qk} into a single new point.

Our partial quasi-order generalizes naturally by letting A ≤ B for two
k-pointed hypergraphs iff (13) holds for all k-pointed hypergraphs X. Then
Hk is defined as the partially ordered set of equivalence classes of k-pointed
hypergraphs with the order induced by ≤.

As an example for 2-pointed hypergraphs we remark that we have al-
ready worked with the partial order H2: in the previous section on almost-
disjointness. The reader will have already noticed the similarity of Figure 27
with Figures 24 and 25 from pages 62 and 63. This is, of course, no coinci-
dence. Phrased in our new terminology, the respective Lemmas 49 and 50
are actually equivalence proofs for 2-pointed hypergraphs.

As with H1 we observe that each Hk has a maximal element 1, which
contains exactly all winners, and a minimal element 0, the class of absolute
losers. The respective arguments are exactly the same as for the case k = 1
above. We note that the degenerate case k = 0 has already appeared, in
form of Lemma 17. With no points, A t B is just A ∪̇ B and therefore the
dichotomy of Lemma 17 applies: H0 consists of only two classes, 0 and 1.
(Here losers are always absolute losers.)

Can we say anything more about Hk for k ≥ 2? Unfortunately, our
knowledge amounts to pretty little. We have the following basic lower
bounds.

54. Proposition. For each k ≥ 0, the partial order Hk contains a chain
of length k + 2.
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Figure 29. Some basic k-pointed hypergraphs.

Proof. From the basic k-pointed hypergraphs Ei in Figure 29 we con-
struct a chain of length k + 2 in Hk as follows. Let Ur denote the k-point
union E1 t · · · t Er of the first r such hypergraphs, 0 ≤ r ≤ k. So the k-
pointed hypergraph Ur contains exactly r independent 2-edges on the points
p1 through pr, and k − r isolated points. Further let Uk+1 be an arbitrary
k-pointed winner. We have

U0 < U1 < · · · < Uk < Uk+1 in Hk

because for each r ≤ k the k-point union UrtEr is a winner while Ur−1tEr

is obviously lost; and Uk+1 is larger than all the other Ur. �

55. Proposition. For each k ≥ 1, the partial order on Hk contains an
antichain of length

(
k

bk/2c
)
.

Proof. For each index set I ⊆ {1, . . . , k} of cardinality bk/2c we let
UI denote the composition of all Ei with i ∈ I. For any pair J 6= J ′, the
k-pointed hypergraphs UJ and UJ ′ are incomparable because for r ∈ J \ J ′

the composition UJ tEr is a winner but UJ ′ tEr is not, i.e., UJ 6≤ UJ ′ ; and
likewise, any Er′ with r′ ∈ J ′ \ J shows that UJ 6≥ UJ ′ . �

These basic calculations might give us some first feeling for the com-
plexity of the Hk. However, they do not address the important point. The
crucial question is:

Are all Hk finite?

If some Hk is finite then so are all Hj with j ≤ k, obviously, because
any Hj is embeddable in Hk by adding k − j isolated dummy points to
any j-pointed hypergraph. We know that H1 is finite. Is there a level in
the hierarchy (Hk) where the complexity explodes from finite to infinite? If
so, this should probably happen quite early, maybe on level two or three.
However, any such statement appears to be difficult to prove.

The finiteness of Hk would have strong implications on the complexity
of weak positional games on hypergraphs that are only Maker-k-connected.
Such a hypergraph H can be written as a nontrivial union of two subhyper-
graphs A and B who overlap on no more than k vertices. If we interpret A
and B as k-pointed hypergraphs with these vertices as points, we can write
H = AtB. If Hk should be finite we could, in principle, identify the equiva-
lence classes of A and B independently—by solving the k-point unions AtX
and B tX for a complete set of representatives X of Hk. The outcomes of
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those subproblems would then tell us the value of H. This way we decom-
pose the big problem whether H is a winner into a constant number of such
questions for smaller hypergraphs. (Note that the size of the representatives
is bounded.) For a decision problem that is PSPACE-complete in general,
this would be quite a remarkable result: we could divide and conquer with
very little overhead.

Actually, we have used this principle already extensively throughout this
chapter—for the case k = 1. In Section 3 we repeatedly cut at articulations
until we obtained Maker-2-connectivity. Each decomposition step used im-
plicitly, through the Articulation Lemma, the fact that H1 contains only
three classes, one of which could always be excluded because of the exis-
tence of a 2-edge in one half.

I have constructed an approximation of H2 that carries a lot of symme-
tries and which might already be the complete picture but I see by now no
way of proving such a statement. Intuitively, finiteness of Hk means that
through only k points, the two halves cannot exchange an arbitrary amount
of information. It should be that during a play across a small interface,
the points soon get congested—until the graph eventually decomposes into
completely disjoint parts. I am strongly convinced of the following.

56. Conjecture. The poset Hk is finite for every k ≥ 0.





CHAPTER 3

Digraph Roots

1. Matrices and Digraphs, Powers and Roots

Consider a directed graph D (or digraph, for short) on n vertices to-
gether with its adjacency matrix, i.e., the n × n matrix A = (aij) with
aij = 1 iff there is an arc j → i in D and aij = 0 otherwise. We can use
iterated multiplications of the adjacency matrix with itself to find paths in
the digraph. Precisely, the (i, j)-entry of the kth power Ak of A is positive
iff there is a walk of length exactly k from vertex i to vertex j in D. By
walk of length k we mean a sequence (v0, v1, . . . , vk) of k + 1 vertices with
an arc from vi−1 to vi for 1 ≤ i ≤ k, where vertices may appear several
times; in contrast to a path, which is a walk with all vertices distinct. We
are only interested in the existence of such walks, not their number—which
is counted by the respective entry of Ak—so we interpret A as a Boolean
0/1-matrix with the product C = A ·B defined in the usual way:

cij =
∨n

h=1
aih ∧ bhj .

Identifying a digraph with its adjacency matrix, we define the kth power,
k ∈ N, of a digraph D to be the digraph Dk on the same vertex set and with
an arc from a to b if and only if there is a directed walk of length exactly
k from a to b in D (possibly visiting some vertices several times). Figure 1
shows an example.

D2 D3D

Figure 1. Powers of a digraph.

Note that the interpretation of digraphs as Boolean matrices implies
that our digraphs may have loops but no multiple arcs. It is easy to see
that the adjacency matrix of Dk is in fact the kth Boolean power of the
adjacency matrix of D (see, for example, [38]).

Boolean matrix algebra serves as a fundamental tool in algorithmic graph
theory. The correspondence between graphs and matrices lies at the heart
of many fundamental algorithms for transitive-closure or shortest-path com-
putations [35, 1, 12] (where usually powers of the matrix A + I, with I
the identity matrix, are considered to account for all paths up to a certain
length k).

71
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We are interested in the inverse operation to exponentiation: root find-
ing. The complexity of the following problem was open until now.

The Boolean-Matrix-Root Problem. Given a Boolean n× n ma-
trix A and an integer k ≥ 2, does there exist a kth root B of A, that is, an
n× n matrix B with Bk = A.

Or equivalenty, stated in terms of digraphs:

The Digraph-Root Problem. Given a digraph D and an integer
k ≥ 2, does there exist a kth root R of D, that is, a digraph R on the same
vertex set, with Rk = D.

Twenty years ago, in the open-problems section of his book [26], Kim in-
quired for the special case k = 2, whether the Boolean-matrix-root problem
might perhaps be NP-complete. We answer this question in the affirmative.

1. Theorem. Deciding whether a square Boolean matrix or, equiva-
lently, a digraph has a kth root is NP-complete for each single parameter
k ≥ 2.

With the right computational problem for the reduction, the proof of
this result turns out surprisingly simple. This is quite remarkable since it
thus relates digraph roots very closely to a well-known NP-complete prob-
lem. It allows to identify quite accurately “the reason” for the hardness of
the problem. In an attempt to isolate and inhibit these computationally
difficult aspects, we shall discover a close connection between digraph roots
and graph isomorphism, which eventually leads to a further complexity re-
sult (Theorem 3). But let us postpone these issues till after the proof and
discussion of Theorem 1.

Related work—related questions. Over the field of complex num-
bers or the reals, matrix roots are a well-studied and still up-to-date topic
of linear algebra [29, 24, 36]. But results from that field of research do
generally not apply to Boolean matrices. While it is known, for example,
that every regular matrix over the complex numbers has a kth root for any
k ≥ 2 [36], this is not true for Boolean matrices, as the invertible matrix(

0
1

1
0

)
shows. Further, complex or real matrices are amenable to numerical

methods like Newton iteration [22], whereas such techniques clearly do not
apply to Boolean matrices. When it comes to roots, Boolean matrices don’t
seem to have much in common with matrices over C since the former behave
much more rigidly than the latter.

The situation is, however, different if we ask for powers of a matrix
instead of roots. There are theoretical results on Boolean matrix powers
[13] and in practice we can, of course, compute the kth power of a Boolean
matrix A by treating it as a matrix over the reals. We calculate Ak over
R and afterwards replace each positive entry with 1. This simple reformu-
lation allows us, for example, to apply fast matrix multiplication methods
such as Strassen’s to path problems in graphs [35, 1]. But this simula-
tion through matrices over the reals clearly only works because there cannot
happen cancellation between positive and negative entries. For root finding,
such simulation over R or C would lead into major problems.
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Figure 2. A directed square root (left) of a symmetric di-
graph (right) which does not have a symmetric square root.

Alternative notions of graph powers. A problem similar to the one
at hand has been discussed by Motwani and Sudan. In [34] they showed
that computing square roots of undirected graphs is NP-hard. But their
notion of graph powers differs from ours in two important points.

They consider undirected graphs only, which in our setting would cor-
respond to symmetric digraphs, i.e., all edges are bidirectional. This not
only restricts the set of possible inputs but also—and this is the decisive
difference—the solutions. For example, the symmetric digraph on the right
of Figure 2 has the digraph to its left as a square root, but it is not the
square of any symmetric digraph. To see this, observe that any square root
of an undirected graph with maximum degree strictly greater than 2 must
also have a vertex of degree at least 3. Such a vertex would in turn induce
a triangle in the square. The digraph in the figure has maximum degree 3
but it does not contain a triangle.

Further, Motwani and Sudan define squaring to maintain existing edges,
which in our setting would correspond to attaching loops to all vertices.
This monotonicity ensures that much information of the underlying graph
can be read off from its square and the hardness proof of [34] makes essential
use of this property. In contrast to this, squaring a digraph under the rules
derived from Boolean matrix multiplication can almost completely destroy
the neighborhood information and may even decompose the digraph. Ac-
tually, most of our arguments depend crucially on such vanishing edges. So
apparently, the squares in [34] and our notion of powers are fundamentally
different concepts.

Nomenclature. In the light of the preceding discussion, Boolean ma-
trices form the right framework to ask questions about roots in the sense
we defined them. They do not leave the ambiguities that the expression
“graph root” obviously has and locate the problem correctly in the context
of semigroups. However, for the actual work, the proof of Theorem 1, we
will resort to the language of graph theory since our arguments will exten-
sively use respective notions like paths, cycles, and vertex neighborhoods.
Moreover, after the NP-completeness proof we shall emphasize the link to
graph theory even more by relating our roots to graph-isomorphism.

So let us agree on the precise meanings of some common graph theoretic
notions whose exact distinction will be crucial in certain situations. A walk
is simply a sequence (a0, a1, . . . , ar) of vertices with an arc ai → ai+1 for
0 ≤ i < r, whereas a path is a walk of pairwise distinct vertices. The
parameter r is the length of the walk respectively path. A cycle is a closed
walk, that means, a0 = ar and vertices may be traversed several times. By
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isolated cycle we mean a strongly connected component of a digraph where
each vertex has indegree and outdegree 1, i.e., a single non-self-touching
cycle without further arcs.

For a digraph R on vertex set V we let

R(v) :=
{
w ∈ V

∣∣ v
R−→ w

}
denote the set of outneighbors of v in R. Defining R̄ to be the digraph
obtained from R by inverting all arcs, we write R̄(v) for the inneighbors
of v. Note that our generalization

R(U) :=
⋃
u∈U

R(u)

to subsets U ⊆ V diverts from standard notation (as for example in [3, sec.
1.2]) as R(U) need not be disjoint from U . In other words, we let a digraph
act on vertex sets just like its adjacency matrix acts on the characteristic
vectors of such sets.

These definitions help simplify our notation. For example, we write
x ∈ R̄j(Y ) to state that there is a walk of length j from x to some vertex in
Y ⊆ V and expressions like R3R̄8R make perfect sense, encoding some kind
of zig-zag walk through the digraph R.

2. NP-Completeness

This section comprises the proof of Theorem 1; but before turning to
the details, presenting a suitable NP-complete problem which we can reduce
to digraph roots, let us collect some motivating observations about digraph
square roots.

Consider some set X of vertices of a digraph D and let Z denote all
outneighbors of vertices in X. Assume for simplicity that X and Z are
disjoint, so in particular, there are no loops or cycles on these vertices. In
a square root of the digraph D, any of the arcs from X to Z must be
realized as paths of length two. Hence, the root must provide a set Y of
intermediate vertices through which all these paths can pass. If now—for
whatever reason—there is only a small number of such intermediate vertices
available, |Y | ≤ r, say, with r a little smaller than |X| and |Z|, these paths
must intersect in order to ship all their information from X to Z. This
situation is almost exactly captured by the following decision problem, which
is already listed in Garey and Johnson’s classic [18] (p. 222).

The Set-Basis Problem. Let C be a collection of subsets of some
finite set S. A set basis for C is another collection B of subsets of S such
that each C ∈ C can be written as a union of sets from B. Given a finite
set S, a collection C of subsets of S, and an integer r ≤ |S|, the set-basis
problem asks whether there exists a set basis B for C consisting of at most
r sets. This problem is known to be NP-complete [40].

We claim that the local configuration of the above square-root problem
is nothing but a set-basis instance. The sets X and Z correspond to the
given collection C and the ground set S, respectively, while the intermediate
vertex set Y takes the place of the sought-after collection B.
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Figure 3. Reducing set basis to kth root (a) and encoding
a set basis as a root (b). (Wide arrows represent collections
of arcs that depend on the actual instance.)

Our precise proof of this claim, which also treats the general case of
arbitrary kth roots, comes in the three customary parts: a reduction from a
set-basis instance to a kth-digraph-root instance and the two complementary
transformations between valid solutions.

The reduction. From a set-basis-problem instance (C, S, r) we con-
struct a digraph D such that D has a kth root iff C has a set basis B of
size at most r. We may assume w.l.o.g. that neither the collection C nor
any C ∈ C be empty, that all C ∈ C be pairwise distinct, and further that⋃

C = S, i.e., each s ∈ S lie in some set C ∈ C.
As suggested by the above discussion, our construction essentially draws

the containment graph of the set system C on S and provides the right
number of intermediate vertices. Surprisingly few framework arcs will have
to be added in order to ensure that any root uses them as intended.

We start with the containment relations. The digraph D possesses the
sets C ∈ C and the elements s ∈ S as vertices and additionally an “anchor
vertex” u. Define the containment arcs

(14) C
D−→ s for all pairs (C, s) ∈ C× S with s ∈ C

and additionally the grounding arcs

u
D−→ C for each C ∈ C.

Compare the left component of Figure 3(a).
The intermediate vertices come in k−1 isomorphic components which are

simply stars. The µth component consists of the r+1 vertices aµ, bµ
1 , bµ

2 , . . . , bµ
r

connected via

aµ D−→ bµ
i for i ∈ {1, . . . , r},

as shown in the right half of Figure 3(a).
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Constructing a root from a set basis. To show that our construction
works, we describe how to obtain a kth root R of the digraph D from a set
basis of size r for C. Therefore we first need a lot of framework arcs that
are independent of the actual basis B: the horizontal paths

u
R−→ a1 R−→ a2 R−→ · · · R−→ ak−1

and
b1
i

R−→ b2
i

R−→ · · · R−→ bk−1
i for each i ∈ {1, . . . , r},

and also the back connections

ak−1 R−→ C for each C ∈ C;

drawn as thin arcs in Figure 3(b).
The remaining arcs depend on the given set basis B = {B1, . . . , Br},

which comes with a representation

(15) C =
⋃

i∈IC

Bi, IC ⊆ {1, . . . , r}

of each set C ∈ C.
Note that a basis with less than r sets can be extended to one of size

r by adding singleton sets {s} ⊆ S and it is also clear that we can pick
the collection B and the index sets IC in such a way that each index i ∈
{1, . . . , r} appears in at least one IC .

The set basis B is now wired via

bk−1
i

R−→ s for each pair (i, s) with s ∈ Bi,

while the corresponding representations are realized as

C
R−→ b1

i for each index i ∈ IC .

These connections appear bundled as wide arrows in Figure 3(b).
These definitions guarantee that there exists an R-walk of length k from

a certain C to some s ∈ S iff there exists any basis set Bi with s ∈ Bi and
i ∈ IC . By the definition of a set basis, the latter condition is equivalent to
s ∈ C, which, by construction of the digraph D, means just that there is a
D-arc from C to s. Thus we have shown that Rk equals D on C × S. The
identity of these two digraphs on the remaining vertices is immediate.

Getting a set basis from a root. We turn to the other, slightly more
intricate implication. Let D be the digraph constructed from a given set-
basis instance (C, S, r) and let R be any kth root of D. From this root
we must obtain a set basis B for C with at most r sets. The basic idea
is, of course, to show that the root R must look essentially as the one we
constructed in the preceding paragraph.

First of all, observe that cycles in R would induce cycles in any positive
power of R. Thus, R contains no cycles. Now consider an arbitrary vertex
C ∈ C. Since u → C in D, there must be an R-walk of length k from u
to C. We claim that all interior vertices of any such walk P are from the
set {a1, . . . , ak−1}. To see this, pick any interior vertex x on P . Clearly x
must have positive outdegree in D because C has. So x can only be some
aµ or from the set C; the remaining alternative x = u would yield a cycle.
Assume for contradiction that x ∈ C. Then there is a path Q of length k in
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R from u to x. Because x was assumed to be an inner vertex on the path P ,
a certain inner vertex y on Q is at distance −k from C. This means y = u,
which implies that the vertex u lies on an R-cycle—a contradiction.

So all interior vertices of R-walks from u to some C ∈ C are from the set
{a1, . . . , ak−1}. Obviously, any such path must use each of these aµ exactly
once since otherwise there would be cycles. Furthermore, all such paths
pass the aµ in the same order, again because two different orders would
yield cycles. We may assume by symmetry that the aµ are traversed from
a1 through ak−1. Thus we see that R(ak−1) = C and conclude

Rk−1(C) = Rk−1R(ak−1) = D(ak−1) = {bk−1
1 , . . . , bk−1

r }.

So all R-walks from C to S pass through these bk−1
i . We focus on the

ultimate edges on any such walk and define

Bi := R
(
bk−1
i

)
for 1 ≤ i ≤ r.

We claim that B := {B1, . . . , Br} is a set basis for C. This is easily verified.
Reading the defining relation (14) as

C
Rk

−→ s ⇐⇒ s ∈ C,

one sees that the index sets

IC :=
{
i
∣∣ bk−1

i ∈ Rk−1(C)
}

yield basis representations of the sets C ∈ C as in Equation (15).
This concludes the proof of Theorem 1.
We emphasize that the given set-basis instance is completely maintained

by our reduction. Its containment relations are encoded one-to-one by arcs
of the digraph. Thus, on the large scale, an instance of the digraph-root
problem can be seen as a collection of many interacting set-basis problems.
One might well argue that finding digraph roots is actually a generalized
set-basis problem.

As a corroboration for this point of view we mention that the set-basis
problem already appeared before in connection with Boolean matrix algebra.
Markowsky [31] used it in a very economic proof for the NP-completeness
of Schein-rank computation.1

3. Roots and Isomorphism

Let us carry the concluding remarks of the preceding section a little
further and have a closer look at Figure 3 from page 75 again. The con-
struction there required only paths of length 2, which then induced a few
long paths in the root. One could say that the computational complexity of
root finding results from the described interaction of many very short paths.
In some sense, our proof has exploited a local phenomenon. If we suppress
the local interaction by some restriction on the digraph, maybe we can find
some further properties of digraph roots that live on a global scale. Here is
our approach.

1Analogous to the matrix rank over fields, the Schein rank of a Boolean matrix A is
the minimal integer ρ such that A can be represented as a Boolean sum A =

∨ρ
i=1ciri,

where the ci are column and the ri row vectors with zero-one entries [26, Sec. 1.4].
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Figure 4. The complete subdivision (right) of a digraph (left).

2. Definition. The complete subdivision of a digraph D is the digraph
obtained from D by replacing each arc a → b of D by a new vertex xab and
the two arcs a → xab → b. (See Figure 4.) We call a digraph a subdivision
digraph if it is (isomorphic to) the complete subdivision of some digraph.

Subdivisions are a fundamental notion in graph theory but opposed to
their common usage in relation with topological minors, we employ them
here to equip our digraphs with a certain stiffness. The effect is the de-
sired inhibition of the local interaction we exploited in the NP-completeness
proof. However, the problem of root finding for such subdivision digraphs
does not become trivial. Instead, the following surprising relation to graph
isomorphism shows up.

3. Theorem. Deciding whether a subdivision digraph with positive min-
imal indegree and outdegree has a kth root, is graph-isomorphism complete
for each single parameter k ≥ 2.

The graph-isomorphism problem asks whether two given (di)graphs are
isomorphic or not, i.e., whether there exists an arc-preserving bijection be-
tween their vertex sets.2 No polynomial-time algorithm for this problem is
known, neither is it known to be NP-complete. On the contrary, it is a prime
candidate for a problem strictly between P and NP-completeness (cf. [27]
and [30]). Computational problems of the same complexity as the graph-
isomorphism problem are called graph-isomorphism complete, or simply iso-
morphism complete because isomorphism problems for several algebraic or
combinatorial structures fall into this class. For example, isomorphism of
semigroups and finite automata [9], finitely represented algebras, or con-
vex polytopes [25]. Other problems ask for properties of the automorphism
group of a graph, for example, computing the order of this group or its
orbits [33].3 Finally, several restrictions of the graph-isomorphism problem
are known to remain isomorphism complete, as for example isomorphism of
regular graphs [9].

As the above list indicates, actually all problems known to be isomor-
phism complete are more or less obviously isomorphism problems of various
combinatorial structures. Hence, the relation between digraph roots and

2One usually considers undirected graphs but it is well-known and easily seen that
with respect to their computational complexity the undirected and directed version of the
problem are equivalent.

3The latter two problems are known to be isomorphism complete only in the weaker
sense of Turing reduction, as opposed to the concept of many-one reduction.
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graph isomorphism we are going to establish in our proof of Theorem 3 may
come quite as surprise.

From isomorphisms to roots. Theorem 3 rests on a structural result
(Theorem 6) which states that any kth root of a subdivision digraph D
establishes isomorphisms between the components of D. This is just the
kind of global structure we wanted to find when we defined subdivision
digraphs.

The starting point is the following connection between digraph roots and
digraph isomorphism, which holds for arbitrary digraphs. Subdivisions will
then be needed to obtain a converse of this result.

4. Proposition. Let D = D1 ∪̇D2 ∪̇ · · · ∪̇Dk be the disjoint union of k
isomorphic digraphs D1, . . . , Dk. Then D has a kth root.

Proof. We construct a digraph R on the vertices of D with Rk = D.
Pick isomorphisms ϕi : D1 → Di, 1 ≤ i ≤ k (ϕ1 being simply the identity).
For each vertex a of D1 we let R contain the path

(16) ϕ1(a) R−→ ϕ2(a) R−→ · · · R−→ ϕk(a)

and additionally the arcs

(17) ϕk(a) R−→ ϕ1(b) for all b ∈ D1(a).

Figure 5 shows a local picture of this construction.

ϕ1(a)

. . .

. . .

. . .
ϕk(a)ϕ3(a)ϕ2(a)

Figure 5. Constructing a kth root (continuous lines) for a
disjoint union of k isomorphic digraphs (dashed lines).

We claim that Rk = D. To see this, pick any v ∈ Di, 1 ≤ i ≤ k, and
compute

Rk(v) = Riϕkϕ
−1
i (v) by (16)

= Ri−1D1ϕ
−1
i (v) by (17)

= ϕiD1ϕ
−1
i (v) by (16)

= Di(v) = D(v),

treating digraphs and isomorphisms equally as mappings between subsets of
the vertex set. �
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From roots to isomorphisms. Note how the root arcs in the above
construction encode the isomorphism between the components of the di-
graph D. Our goal is to show that for a subdivision digraph, any root
establishes isomorphisms between the weakly connected components of this
digraph in exactly the same way. Before we can embark on this venture,
however, we have to take care of some degenerate cases that do not fit into
this picture.

Usually in a subdivision digraph one can easily distinguish the original
vertices, sometimes called branching vertices, from the newly inserted sub-
division vertices. In fact, a subdivision digraph is obviously bipartite and
as soon as every weakly connected component contains at least one vertex
whose indegree or outdegree differs from 1, the two classes can be uniquely
identified.

A problem arises with subdivision digraphs that contain isolated cycles.
In such components, all vertices look like subdivision vertices and this ab-
sence of clearly identifiable branching vertices leads to untypical behavior
with respect to root finding. Fortunately, isolated cycles are simple objects
and we can completely describe their powers.

5. Lemma. The kth power of an isolated cycle of length r is the disjoint
union of gcd(r, k) isolated cycles of length r/gcd(r, k).

Proof. For every vertex x on an isolated cycle C, the sets Ck(x) and
C̄k(x) are singletons. So each vertex of Ck has in– and outdegree 1, that
means, Ck is the disjoint union of isolated cycles and by symmetry, all these
cycles are of the same length. To determine this common length, start at
an arbitrary vertex a and walk around C until you first reach a again in a
multiple ` of k steps. Clearly, ` is the least common multiple of r and k; so
the length of a cycle in Ck is

`

k
=

lcm(r, k)
k

=
r

gcd(r, k)
. �

As a consequence of Lemma 5, isolated cycles cannot have the isomor-
phism property we are looking for. But this is no problem. We shall show
later that any vertex on an isolated cycle of a subdivision digraph D must
also lie on an isolated cycle in any root of D. Thus, with respect to roots,
cycle vertices do not interact with vertices from the other components of a
subdivision digraph and we may in the following restrict our attention to
subdivision digraphs without isolated cycles.

Ignoring isolated cycles we can show that subdivision digraphs bear the
desired isomorphism structure—under the unfortunately indispensable ad-
ditional condition that each vertex has at least one inneighbor and one
outneighbor. We shall prove the following theorem.

6. Theorem. A subdivision digraph without isolated cycles and with
positive minimal indegree and outdegree has a kth root if and only if it is
the disjoint union of k isomorphic digraphs.

The basic idea for the proof of Theorem 6 is to show that in any kth root
of a subdivision digraph, subdivision vertices and branching vertices appear
in blocks of length k. More precisely, we will show that any subdivision
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vertex of D lies on an R-path of length k that consists only of subdivision
vertices (of D) and likewise for branching vertices.

A direct proof of this statement, however, appears quite difficult since
“subdivision vertex” is a semantic concept depending on the global struc-
ture of the digraph. Therefore we work with the simple local properties of
subdivision vertices that can easily be dealt with.

7. Definition. We call a vertex of a digraph thin if its indegree and
outdegree are 1; otherwise we call it proper.

The second step in our analysis will be to identify root arcs that are
unique for their incident vertices, thus establishing unique correspondences
that will be needed to identify the sought-after isomorphisms.

8. Definition. We call an arc ab of a digraph R strong if no further
arcs leave a or enter b, i.e., R(a) = {b} and R̄(b) = {a}. More generally, a
walk is called strong if all of its arcs are strong.

Most of the forthcoming proofs will be indirect, leading to contradic-
tions to the following trivial observation about subdivision digraphs, which
expresses the simple fact that digraphs, as we define them, cannot have
parallel edges.

9. Observation. No two vertices in a subdivision digraph have a com-
mon inneighbor and a common outneighbor. �

A general remark to avoid confusion. As before, we shall deal with two
different digraphs on the same vertex set. When we talk about subdivision
and branching vertices or thin and proper vertices, these notions shall always
refer to (the arcs of) the subdivision digraph D. On the other hand, the
term “strong” will always refer to arcs of the root R.

For technical reasons we provide the lemmas about unique arcs first and
construct the long paths afterwards, since the latter rely on the former. Here
is our first criterion for strongness of root arcs:

10. Lemma. In a root R of a subdivision digraph D, any R-arc between
two D-thin vertices is strong.

Proof. Consider any pair a, b of D-thin vertices with a → b in R. As a
thin vertex, a must also have at least one outneighbor in R, so assume for
contradiction that deg+

R(a) > 1, i.e., there exists some c 6= b with a → c in
R. By symmetry, the case deg−R(b) 6= 1 reduces to this situation by reversing
all arcs.

The unique vertex u in R̄k−1(a) has at least two D-outneighbors, b and c.
Hence, this u is proper and therefore c is thin. So b and c are both thin and
the sets Rk−1(b) and Rk−1(c) must therefore be nonempty. From Rk−1(b)∪
Rk−1(c) ⊆ Rk(a) we thus conclude that Rk−1(b) = Rk−1(c) = {v}, where v
is the unique D-outneighbor of a. Altogether, we have found two vertices,
b and c, with common in– and common outneighbors—a contradiction to
Observation 9. �

One could actually relax the preconditions in Lemma 10 but its present
form is sufficient for our purposes and it will fit quite naturally into its later
applications.
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There is an analog of Lemma 10 for proper vertices but it requires an
explicit minimal-degree condition that was trivially met by thin vertices.
Actually there can be non-strong arcs between pairs of proper vertices. So it
is in the following lemma where the additional degree condition of Theorem 3
enters.

11. Lemma. In a root R of a subdivision digraph D, any R-arc between
two D-proper vertices that have each at least one in– and one outneighbor
is strong.

Proof. Consider any pair a, b of D-proper vertices with a → b in R.
Assume for contradiction that there exists some c 6= b with a → c in R.
Again, the case deg−R(b) > 1 reduces to this situation. Since a has a D-
inneighbor, the set R̄k−1(a) is nonempty. But any vertex from this set
is an inneighbor of two vertices, one of which is proper. An impossible
configuration in a subdivision digraph. �

The preceding two lemmas provide us with a simple procedure to identify
R-walks of D-thin or D-proper vertices. Starting from a thin vertex a0

of D, we check whether there is some D-thin outneighbor a1 of a0 in R.
If such an a1 exists it must be unique by Lemma 10. Next check for a
D-thin outneighbor a2 of a1 and iterate this process until some ultimate
at has no further D-thin outneighbors in R. Likewise we may search for
inneighbors, altogether constructing a unique maximal R-walk of D-thin
vertices containing a0—provided we don’t run into cycles. Analogously, we
can find unique maximal walks of proper vertices.

We have now all necessary prerequisites to prove that thin vertices and
proper vertices come in blocks.

12. Lemma. Let R be a kth root of a subdivision digraph D and let
a0 → a1 → · · · → a` be an R-walk of length ` ≤ k between two D-thin
vertices a0 and a`. Then all intermediate ai, 0 < i < `, are also thin.

Proof. We pick an arbitrary index j between 0 and ` and show that aj

is a thin vertex. Therefore first observe that the sets Rk(aj) and R̄k(aj) are
nonempty because a0 and a` are thin. We assume for contradiction that aj is
a proper vertex, so one of those two sets must contain at least two elements.
By symmetry assume that |Rk(aj)| > 1; so let x, y be two different elements
from this set.

Denote the unique vertex in Rk(a0) by v. Since Rk−j(aj), Rk−`(a`) ⊆
Rk(a0), we get precisely

Rk−j(aj) = {v} = Rk−`(a`).

The first identity tells us that from aj the two vertices x, y ∈ Rk(aj) are
only reachable via v, i.e., x, y ∈ Rj(v), and together with the second identity
this implies

(18) x, y ∈ Rk−`+j(a`).

See Figure 6.
Since a` is thin, the set Rk(a`) contains exactly one vertex, w, say. Thus,

by (18), we have R`−j(x)∪R`−j(y) ⊆ {w}. As neighbors of the proper vertex
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j
j k − `

x

a0 aj a` v
y

w

`− j
`− j

Figure 6. Path construction from the proof of Lemma 12.

a` the vertices x and y must be thin, so the sets R`−j(x) and R`−j(y) are
nonempty and we actually get R`−j(x) = R`−j(y) = {w}, which implies
Rk(x) = Rk(y). Altogether, x and y have the common D-inneighbor a` and
also a common outneighbor, in contradiction to Observation 9. �

13. Lemma. Let R be a kth root of a subdivision digraph D and let
a0 → a1 → · · · → a` be an R-walk of length ` ≤ k between two D-proper
vertices a0 and a`. Then all intermediate ai, 0 < i < `, are also proper.

Proof. Assume for contradiction that some aj is a thin vertex. Then
Rk(aj) is nonempty, so we may pick some u ∈ Rk−j(aj) together with some
R-walk P of length k − j from aj to u. As a D-outneighbor of the proper
vertex a0 the vertex u is thin. Thus, by Lemma 12, all vertices on the walk
P are in fact thin and Lemma 10 then implies that this walk is strong.
Therefore the set R`−i(ai) contains exactly one vertex, which can only be
a`. But this vertex was assumed to be proper. �

The proofs of Lemmas 10 through 13 show very graphically how the local
properties of subdivision digraphs are exploited on the way to Theorems 3
and 6. They all employ a kind of squeezing technique along R-paths, leading
to the unique identification of certain vertices or a contradiction involving
too many neighbors of a subdivision vertex.

Combining the homogeneous paths provided by Lemmas 12 and 13 with
the uniqueness statements of Lemmas 10 and 11, we are now able to con-
struct isomorphisms from roots.

Proof of Theorem 6. We already know from Proposition 4 that the
disjoint union of k isomorphic digraphs has a kth root. So it remains to
decompose D into k isomorphic subgraphs D1, . . . , Dk and to provide iso-
morphisms between them. We do this by partitioning the whole vertex set
into blocks of size k, such that each block contains exactly one vertex from
each Di.

For each proper vertex a of D, determine the maximal R-walk Pa through
a that consists entirely of D-proper vertices, as described in connection with
Lemmas 10 and 11. Such a walk cannot extend indefinitely, precisely, it
consists of at most k vertices because all vertices at distance k from a proper
vertex are thin. On the other hand, Pa must have at least k vertices because
otherwise its thin neighbors would, by Lemma 12, force all its vertices to be
thin, too.

For a thin vertex b we proceed similarly. Determine the maximal R-walk
Qb through b that consists entirely of D-thin vertices. Again, such a walk
is bounded by some proper vertices to its left and right because otherwise
we would get a cycle of thin vertices, which we excluded in the statement of
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the theorem. As in the case of proper vertices, the length of Qb is at least
k − 1 (i.e., it contains at least k vertices) because by Lemma 13 the proper
neighbors at the two ends must be at least k + 1 steps apart. To determine
its exact length, we turn back to the original concept of subdivision and
branching vertices. Observe that by what we already know about proper
vertices, Qb is adjacent to a sequence of k branching vertices at each end.
Hence, the first k and also the last k vertices of Qb must be subdivision
vertices of D. The next k vertices, on either end of Qb, are then by defini-
tion branching vertices again, followed by another sequence of k subdivision
vertices, etc. Clearly, this pattern only works out even if Qb contains exactly
(2t + 1)k vertices, for some nonnegative integer t.

We then subdivide all paths Qb into paths of size k so that afterwards
each vertex v of D lies on a unique strong path Pv of k thin respectively
proper vertices and any two such paths Pb, Pc are either vertex disjoint or
identical.

The obvious idea to identify isomorphic subgraphs now, is to put each
vertex v of D into the subgraph Di that corresponds to the position of v on
the path Qv, i.e., the ith vertex goes into Di. The sought-after isomorphisms
φij : Di → Dj are also induced by the partition. Simply let φij map a vertex
v ∈ Di to the unique vertex of Dj that lies on the path Qv. Clearly this
mapping is well-defined. In order to check that it is also an isomorphism, we
essentially only have to revisit the proof of Proposition 4, which constructed
a root from isomorphisms. The crucial observation is again the strongness of
our paths. Any walk of length k in R passes exactly once from one path Pa to
a some path Pb with a → b in D, the remaining k−1 steps using only strong
arcs. From this correspondence we see immediately that two vertices from
the same path Pa have D-neighbors in the same set of adjacent paths. �

For computational purposes we note the following simple reformulation
of Theorem 6.

14. Corollary. Let D be a subdivision digraph without isolated cycles
and with positive minimal indegree and outdegree. Let further D1, . . . , Dm be
the different isomorphism classes of weakly connected components appearing
in D and let di count the components in D isomorphic to Di, 1 ≤ i ≤ m.
Then D has a kth root if and only if k|di for all i ∈ {1, . . . ,m}. �

Counting cycles. We already discovered in Lemma 5 that powers of
cycles are again cycles. To justify our hitherto ignorance towards cycles, we
now also establish the converse: cycles have cycles as roots.

15. Lemma. All vertices that lie on isolated cycles of a subdivision di-
graph D also lie on isolated cycles in any root of D.

Proof. Let R be some kth root of D. We show that for any vertex c
on a D-cycle, the sets Ri(c) and R̄i(c), 1 ≤ i < k, are all singletons. This
means that two D-adjacent vertices are connected through a strong walk in
R, which proves the lemma.

So assume for contradiction that there exist two different vertices x, y
in Rj(c), 1 ≤ j < k. (For R̄ the statement is completely symmetric to this
case.) There exists some u ∈ R̄k(x)∩R̄k(y) because R̄k(c) is nonempty. With
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two outneighbors in the subdivision digraph D, this u must be a branching
vertex, hence, x and y are subdivision vertices. Therefore the sets Rk(x) and
Rk(y) are nonempty and since Rk(c) consists of exactly one vertex, we even
have Rk−i(x) = Rk−i(y), which now implies Rk(x) = Rk(y) 6= ∅. Hence, the
two vertices x and y yield a contradiction to Observation 9. �

Lemma 5 told us that a single isolated root cycle yields only cycles of the
same length in D. When we want to decide whether a collection of cycles
in a given subdivision digraph D has a root, we may thus treat cycles of
different lengths separately.

So assume that that D is the disjoint union of isolated cycles, all of a
common length `, and that R is a kth root of D. Let C be a cycle in R of
some length r. We write

(19) ` =
∏

p`i
i , k =

∏
pki

i , r =
∏

pri
i ,

where p1, p2, . . . are the prime numbers. Lemma 5 tells us r = ` · gcd(r, k);
expressed in terms of prime factorizations this reads ri = `i + min{ri, ki},
which yields the implications

`i > 0 ⇒ ri = `i + ki,(20)

`i = 0 ⇒ 0 ≤ ri ≤ ki.(21)

So the length r of the root cycle C is determined up to the order ri at pi for
those indices i that satisfy `i = 0 and ki > 0.

We now argue that for root checking we may restrict our attention to
root cycles with ri = 0 in (21). Assume that some root cycle C of length r
has rj > 0 for some index j with `j = 0. Replace C by p

rj

j many cycles of
length

r′ :=
r

p
rj

j

=
∏
i6=j

pri
i

each. One easily checks r′/ gcd(r′, k) = r/ gcd(r, k) to see that the new
cycles together have the same kth power as the old cycle C. Hence, the new
digraph is also a root of D. By repeating this transformation until all root
cycles satisfy ri = 0 in (21) for all primes, we may assume that all cycles in
R have the same (minimal) length

r =
∏
li>0

p`i+ki
i .

How many D-cycles of length ` does one R-cycle of length r give? By
Lemma 5 this number is exactly

gcd(r, k) =
∏

p
min{ri,ki}
i =

∏
`i>0

p
min{`i+ki,ki}
i =

∏
`i>0

pki
i .

This shows that a disjoint union of m cycles of length ` has a kth root if
and only if

(22)
∏
`i>0

pki
i divides m,

where `i and ki are the orders of ` resp. k at pi as defined in (19).
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16. Proposition. Given a subdivision digraph D that consists of iso-
lated cycles only and a parameter k ≥ 2, we can check in polynomial time
whether D has a kth root.

Proof. We sum up the results of the preceding discussion in a simple
algorithm. For each integer ` that appears as the length of a cycle in D,
compute the prime factorization ` =

∏
p`i

i and then the order ki of k at each
prime pi with positive `i, i.e., the maximal ki so that pki

i |k. The digraph
D has a kth root iff (22) is satisfied for each length ` (the integer m there
counting the number of length-` cycles).

The `i can be obtained in polynomial time since ` is bounded by the size
of D and the relevant ki are determined efficiently by simple division, even
if k is exponential in the input size. �

Reducing isomorphism to subdivision roots. It remains to merge
the results of the preceding sections into a proof of our isomorphism-com-
pleteness theorem. We now give the details of both polynomial-time reduc-
tions between digraph-isomorphism and subdivision-digraph roots.

Proof of Theorem 3. Let us first show that digraph roots are no eas-
ier to compute than digraph isomorphism, by giving a many-one reduction
from the latter problem to the former.

For a given pair D1, D2 of digraphs, we construct a subdivision digraph
D as follows.

(i) Make k − 2 isomorphic copies D3, . . . , Dk of D2

(ii) Extend each Di, 1 ≤ i ≤ k, to a digraph D′
i by adding two new

“super vertices” si, ti, introducing the double connections si →
a → si for each a ∈ Di, equipping ti with a self-loop ti → ti, and
attaching it via si → ti.

(iii) Form the complete subdivision D′′
i of each extended D′

i.
(iv) Let D := D′′

1 ∪̇D′′
2 ∪̇ · · · ∪̇D′′

k be the disjoint union of the D′′
i .

Clearly D is a subdivision digraph and the vertices si guarantee that it
has positive minimal in– and outdegree and consists of exactly k components,
none of which is an isolated cycle. Hence, Theorem 6 tells us that D has
a kth root iff all D′′

i are isomorphic or, equivalently, all D′
i are isomorphic.

Since the ti are distinguishable from all other vertices in the respective D′
i

(because they are the only self-looped vertices with outdegree 1) this is the
case iff all Di are isomorphic or, by step (i), simply iff D1 ' D2.

We turn to the other reduction from subdivision-digraph roots to digraph
isomorphism, which, by means of Proposition 16 and Theorem 6, is now
very easy to formulate; but only as a Turing reduction, as opposed to the
stronger notion of many-one reduction. That is, we describe a polynomial-
time algorithm for the subdivision-digraph-root problem that may use a
digraph-isomorphism oracle arbitrarily often.

Given a subdivision digraph D with positive minimal in– and outdegree,
together with an integer k, we first use Proposition 16 to test in polynomial
time whether the union of all isolated cycles of D has a kth root. Then we
group the non-cycle components of D into isomorphism classes and apply
Corollary 14. The independent treatment of isolated cycles and non-cycle
components was justified by Lemmas 5 and 15. �
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Outlook. While the original problem, the open complexity status of
Boolean matrix root computation, is now settled, our search for further
structure has lead to new questions. First of all, it would be desirable
to get rid of the degree condition in Theorem 3. Let us indicate what
can happen in a subdivision digraph that contains vertices without in– or
outneighbors. Figure 7 shows such a digraph D together with a square
root R. The two final root arcs can touch each other because the topmost
vertex has no outneighbor and Lemma 11 about strong root arcs does not
apply. Consequently, the minimal-degree condition is in fact indispensable
for Theorem 6. But could it still be possible to remove it from the complexity
result of Theorem 3? Observe that instead of being the disjoint union of
two isomorphic subgraphs, the digraph D in Figure 7 can be decomposed
into two parts, A and B (the former consisting of the two paths on the left,
the latter containing the remaining five vertices), such that there exists a
surjective homomorphism (i.e., an arc-preserving map) from A onto B. This
homomorphism corresponds exactly to those arcs of R that go from A to B.

D R

Figure 7. Dropping the degree condition in Theorem 6.

Though the general situation seems more difficult to analyze, this simple
example indicates that when the degree condition is dropped, we have to deal
with several interacting homomorphism problems. Thus, it is not at all clear
whether the relaxed digraph root problem remains isomorphism complete
since the general homomorphism problem for graphs is NP-complete [21].
(3-Colorability can be written as a homomorphism problem, for example).

More generally, we might ask for stronger versions of Theorem 3 show-
ing isomorphism completeness of root finding for larger classes of digraphs.
Although the structural result of Theorem 6 requires the special appear-
ance of subdivision digraphs, their strict regularity should not ultimately be
needed to deactivate the computationally hard aspects of the root problem
established through Theorem 1. Yet, the concept of subdivisions and the
techniques we employed throughout the proofs of Lemmas 10 to 13 might
serve as a guideline for such generalizations.
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Zusammenfassung

In dieser Dissertation betrachten wir neue Strategien für ein unendliches
kombinatorisches Spiel, untersuchen die Komplexität einer Klasse von Spie-
len auf Hypergraphen und beantworten eine offene Frage zu einem Berech-
nungsproblem auf gerichteten Graphen. Obwohl gewisse Verbindungen zwi-
schen den behandelten Gebieten bzw. den prinzipiellen Fragestellungen be-
stehen, handelt es sich um drei unabhängige Themen.

Das Engel-Problem. Auf einem unendlichen Schachbrett versucht der
Engel, eine “Schachfigur” mit beschränkter Schrittweite, seinem Gegner,
dem Teufel, unendlich lange davonzulaufen. Der Teufel blockiert Zug um
Zug Felder des Brettes mit der Absicht, den Engel einzukreisen. Es ist ein
offenes Problem, ob ein Engel mit hinreichend großen Schritten gewinnen
kann. Wir verbessern eine bekannte Teufel-Strategie und zeigen außerdem,
dass der Engel auf einem dreidimensionalen Brett entkommt.

Positionelle Spiele auf Hypergraphen. Zwei Spieler wählen ab-
wechselnd Ecken eines Hypergraphen bis alle Ecken vergeben sind. Der
Anziehende gewinnt, wenn es ihm gelingt, eine Kante des Hypergraphen zu
vervollständigen, andernfalls siegt sein Gegner. Diese asymmetrische Ver-
allgemeinerung des bekannten Spiels Tic-Tac-Toe wird als schwaches posi-
tionelles Spiel bezeichnet und ist PSPACE-vollständig. Der entsprechende
Härtebeweis verwendet Kanten mit bis zu 11 Ecken. Wir versuchen Spiele
auf Hypergraphen mit nicht mehr als drei Ecken pro Kante vollständig
zu lösen. Dies gelingt uns fast, mit der zusätzlichen Einschränkung, dass
sich je zwei Kanten in höchstens einer Ecke treffen dürfen. Mittels einer
vollständigen Klassifizierung in Gewinner und Verlierer erhalten wir einen
Polynomialzeit-Algorithmus, der solche Spiele optimal spielt.

Wurzeln gerichteter Graphen. Interpretiert man eine quadratische
Boolesche 0/1-Matrix als Adjazenzmatrix eines gerichteten Graphen, so in-
duziert die Matrixmultiplikation auf natürliche Weise eine Potenzoperation
auf gerichteten Graphen. Wir zeigen, dass in diesem Sinne das Berechnen
von Wurzeln gerichteter Graphen NP-vollständig ist. In einem zweiten Teil
stellen wir eine Beziehung zwischen solchen Wurzeln und Graphisomorphie
her und zeigen, dass für eine spezielle Klasse von gerichteten Graphen das
Wurzelproblem von derselben Komplexität ist wie das Isomorphie-Problem
für Graphen.
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