
Automated Reasoning

Harald Ganzinger

Viorica Sofronie-Stokkermans

Uwe Waldmann

Summer Term 2004

1

Topics of the Course

Propositional logic

syntax, semantics

OBDDs, DPLL-procedure

First-order predicate logic

syntax, semantics, model theory, . . .

resolution, tableaux

First-order predicate logic with equality

term rewriting systems

Knuth-Bendix completion, superposition

Implementation techniques

indexing data structures

2

Emphasis in this Course

• introduction into logics and deductive services underlying

important domains of application

• proof systems: soundness, completeness, complexity,

implementation

• implementation of theoretical constructions

• efficient algorithms for specific deduction problems

3

Literature

Schöning: Logik für Informatiker, Spektrum

Fitting: First-Order Logic and Automated Theorem Proving,

Springer

Baader and Nipkow: Term Rewriting and All That, Cambridge

Univ. Press

4

Part 1: Propositional Logic

Propositional logic

• logic of truth values

• decidable (but NP-complete)

• can be used to describe functions over a finite domain

• important for hardware applications (e.g., model checking)

5

1.1 Syntax

• propositional variables

• logical symbols

⇒ Boolean combinations

6

Propositional Variables

Let Π be a set of propositional variables.

We use letters P, Q, R, S , to denote propositional variables.

7

Propositional Formulas

FΠ is the set of propositional formulas over Π defined as follows:

F ,G ,H ::= ⊥ (falsum)

| > (verum)

| P, P ∈ Π (atomic formula)

| ¬F (negation)

| (F ∧ G) (conjunction)

| (F ∨ G) (disjunction)

| (F → G) (implication)

| (F ↔ G) (equivalence)

8

Notational Conventions

• We omit brackets according to the following rules:

– ¬ >p ∨ >p ∧ >p → >p ↔

(binding precedences)

– ∨ and ∧ are associative and commutative

– → is right-associative

9

1.2 Semantics

In classical logic (dating back to Aristoteles) there are “only”

two truth values “true” and “false” which we shall denote,

respectively, by 1 and 0.

There are multi-valued logics having more than two truth values.

10

Valuations

A propositional variable has no intrinsic meaning. The meaning

of a propositional variable has to be defined by a valuation.

A Π-valuation is a map

A : Π → {0, 1}.

where {0, 1} is the set of truth values.

11

Truth Value of a Formula in A

Given a Π-valuation A, the function A∗ : Σ-formulas → {0, 1}

is defined inductively over the structure of F as follows:

A∗(⊥) = 0

A∗(>) = 1

A∗(P) = A(P)

A∗(¬F) = 1 −A∗(F)

A∗(FρG) = Bρ(A
∗(F),A∗(G))

with Bρ the Boolean function associated with ρ

For simplicity, we write A instead of A∗.

12

1.3 Models, Validity, and Satisfiability

F is valid in A (A is a model of F ; F holds under A):

A |= F :⇔ A(F) = 1

F is valid (or is a tautology):

|= F :⇔ A |= F for all Π-valuations A

F is called satisfiable iff there exists an A such that A |= F .

Otherwise F is called unsatisfiable (or contradictory).

13

Entailment and Equivalence

F entails (implies) G (or G is a consequence of F), written

F |= G , if for all Π-valuations A, whenever A |= F then A |= G .

F and G are called equivalent if for all Π-valuations A we have

A |= F ⇔ A |= G .

Proposition 1.1:

F entails G iff (F → G) is valid

Proposition 1.2:

F and G are equivalent iff (F ↔ G) is valid.

14

Entailment and Equivalence

Extension to sets of formulas N in the “natural way”, e.g.,

N |= F if for all Π-valuations A: if A |= G for all G ∈ N, then

A |= F .

15

Validity vs. Unsatisfiability

Validity and unsatisfiability are just two sides of the same medal

as explained by the following proposition.

Proposition 1.3:

F valid ⇔ ¬F unsatisfiable

Hence in order to design a theorem prover (validity checker) it

is sufficient to design a checker for unsatisfiability.

Q: In a similar way, entailment N |= F can be reduced to

unsatisfiability. How?

16

Checking Unsatisfiability

Every formula F contains only finitely many propositional

variables. Obviously, A(F) depends only on the values of those

finitely many variables in F under A.

If F contains n distinct propositional variables, then it is

sufficient to check 2n valuations to see whether F is satisfiable

or not.

⇒ truth table.

So the satisfiability problem is clearly deciadable (but, by Cook’s

Theorem, NP-complete).

Nevertheless, in practice, there are (much) better methods than

truth tables to check the satisfiability of a formula. (later more)

17

Substitution Theorem

Proposition 1.4:

Let F and G be equivalent formulas, let H be a formula in which

F occurs as a subformula.

Then H is equivalent to H ′ where H ′ is obtained from H by

replacing the occurrence of the subformula F by G .

(Notation: H = H[F], H ′ = H[G].)

Proof: By induction over the formula structure of H.

18

Some Important Equivalences

Proposition 1.5:

The following equivalences are valid for all formulas F ,G ,H:

(F ∧ F) ↔ F

(F ∨ F) ↔ F (Idempotency)

(F ∧ G) ↔ (G ∧ F)

(F ∨ G) ↔ (G ∨ F) (Commutativity)

(F ∧ (G ∧ H)) ↔ ((F ∧ G) ∧ H)

(F ∨ (G ∨ H)) ↔ ((F ∨ G) ∨ H) (Associativity)

(F ∧ (G ∨ H)) ↔ ((F ∧ G) ∨ (F ∧ H))

(F ∨ (G ∧ H)) ↔ ((F ∨ G) ∧ (F ∨ H)) (Distributivity)

19

Some Important Equivalences

The following equivalences are valid for all formulas F ,G ,H:

(F ∧ (F ∨ G)) ↔ F

(F ∨ (F ∧ G)) ↔ F (Absorption)

(¬¬F) ↔ F (Double Negation)

¬(F ∧ G) ↔ (¬F ∨ ¬G)

¬(F ∨ G) ↔ (¬F ∧ ¬G) (De Morgan’s Laws)

(F ∧ G) ↔ F , if G is a tautology

(F ∨ G) ↔ >, if G is a tautology (Tautology Laws)

(F ∧ G) ↔ ⊥, if G is unsatisfiable

(F ∨ G) ↔ F , if G is unsatisfiable (Tautology Laws)

20

